BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 22899713)

  • 1. PKA isoforms coordinate mRNA fate during nutrient starvation.
    Tudisca V; Simpson C; Castelli L; Lui J; Hoyle N; Moreno S; Ashe M; Portela P
    J Cell Sci; 2012 Nov; 125(Pt 21):5221-32. PubMed ID: 22899713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of PKA in the translational response to heat stress in Saccharomyces cerevisiae.
    Barraza CE; Solari CA; Marcovich I; Kershaw C; Galello F; Rossi S; Ashe MP; Portela P
    PLoS One; 2017; 12(10):e0185416. PubMed ID: 29045428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions.
    Tudisca V; Recouvreux V; Moreno S; Boy-Marcotte E; Jacquet M; Portela P
    Eur J Cell Biol; 2010 Apr; 89(4):339-48. PubMed ID: 19804918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activation loop of PKA catalytic isoforms is differentially phosphorylated by Pkh protein kinases in Saccharomyces cerevisiae.
    Haesendonckx S; Tudisca V; Voordeckers K; Moreno S; Thevelein JM; Portela P
    Biochem J; 2012 Dec; 448(3):307-20. PubMed ID: 22957732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prion-like domain of Tpk2 catalytic subunit of protein kinase A modulates P-body formation in response to stress in budding yeast.
    Barraza CE; Solari CA; Rinaldi J; Ojeda L; Rossi S; Ashe MP; Portela P
    Biochim Biophys Acta Mol Cell Res; 2021 Jan; 1868(1):118884. PubMed ID: 33039554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PKA-chromatin association at stress responsive target genes from Saccharomyces cerevisiae.
    Baccarini L; Martínez-Montañés F; Rossi S; Proft M; Portela P
    Biochim Biophys Acta; 2015 Nov; 1849(11):1329-39. PubMed ID: 26403272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat stress regulates the expression of TPK1 gene at transcriptional and post-transcriptional levels in Saccharomyces cerevisiae.
    Cañonero L; Pautasso C; Galello F; Sigaut L; Pietrasanta L; Arroyo J; Bermúdez-Moretti M; Portela P; Rossi S
    Biochim Biophys Acta Mol Cell Res; 2022 Apr; 1869(4):119209. PubMed ID: 34999138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional responses to glucose in Saccharomyces cerevisiae strains lacking a functional protein kinase A.
    Livas D; Almering MJ; Daran JM; Pronk JT; Gancedo JM
    BMC Genomics; 2011 Aug; 12():405. PubMed ID: 21827659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae.
    Brengues M; Parker R
    Mol Biol Cell; 2007 Jul; 18(7):2592-602. PubMed ID: 17475768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex regulation of Hsf1-Skn7 activities by the catalytic subunits of PKA in Saccharomyces cerevisiae: experimental and computational evidences.
    Pérez-Landero S; Sandoval-Motta S; Martínez-Anaya C; Yang R; Folch-Mallol JL; Martínez LM; Ventura L; Guillén-Navarro K; Aldana-González M; Nieto-Sotelo J
    BMC Syst Biol; 2015 Jul; 9():42. PubMed ID: 26209979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cap-independent translation is required for starvation-induced differentiation in yeast.
    Gilbert WV; Zhou K; Butler TK; Doudna JA
    Science; 2007 Aug; 317(5842):1224-7. PubMed ID: 17761883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The histone 3'-terminal stem-loop-binding protein enhances translation through a functional and physical interaction with eukaryotic initiation factor 4G (eIF4G) and eIF3.
    Ling J; Morley SJ; Pain VM; Marzluff WF; Gallie DR
    Mol Cell Biol; 2002 Nov; 22(22):7853-67. PubMed ID: 12391154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated.
    Castelli LM; Lui J; Campbell SG; Rowe W; Zeef LA; Holmes LE; Hoyle NP; Bone J; Selley JN; Sims PF; Ashe MP
    Mol Biol Cell; 2011 Sep; 22(18):3379-93. PubMed ID: 21795399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Pan X; Heitman J
    Mol Cell Biol; 1999 Jul; 19(7):4874-87. PubMed ID: 10373537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening.
    Pautasso C; Reca S; Chatfield-Reed K; Chua G; Galello F; Portela P; Zaremberg V; Rossi S
    FEMS Yeast Res; 2016 Aug; 16(5):. PubMed ID: 27188886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast.
    Jivotovskaya AV; Valásek L; Hinnebusch AG; Nielsen KH
    Mol Cell Biol; 2006 Feb; 26(4):1355-72. PubMed ID: 16449648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae.
    Gancedo JM; Flores CL; Gancedo C
    Biochim Biophys Acta; 2015 Jul; 1850(7):1362-7. PubMed ID: 25810078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of translational control in yeast compromised for the major mRNA decay pathway.
    Holmes LE; Campbell SG; De Long SK; Sachs AB; Ashe MP
    Mol Cell Biol; 2004 Apr; 24(7):2998-3010. PubMed ID: 15024087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of PKA activity by an autophosphorylation mechanism in Saccharomyces cerevisiae.
    Solari CA; Tudisca V; Pugliessi M; Nadra AD; Moreno S; Portela P
    Biochem J; 2014 Sep; 462(3):567-79. PubMed ID: 24947305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae.
    Yoon JH; Choi EJ; Parker R
    J Cell Biol; 2010 May; 189(5):813-27. PubMed ID: 20513766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.