BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22899723)

  • 1. Unrepairable DNA double-strand breaks that are generated by ionising radiation determine the fate of normal human cells.
    Noda A; Hirai Y; Hamasaki K; Mitani H; Nakamura N; Kodama Y
    J Cell Sci; 2012 Nov; 125(Pt 22):5280-7. PubMed ID: 22899723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation.
    Xue L; Yu D; Furusawa Y; Okayasu R; Tong J; Cao J; Fan S
    Mutat Res; 2009 Nov; 670(1-2):15-23. PubMed ID: 19583974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the DNA-damage response to HZE particles by shielding.
    Mukherjee B; Camacho CV; Tomimatsu N; Miller J; Burma S
    DNA Repair (Amst); 2008 Oct; 7(10):1717-30. PubMed ID: 18672098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells.
    Klammer H; Kadhim M; Iliakis G
    Cancer Res; 2010 Nov; 70(21):8498-506. PubMed ID: 20861183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation.
    Wilson PF; Nham PB; Urbin SS; Hinz JM; Jones IM; Thompson LH
    Mutat Res; 2010 Jan; 683(1-2):91-7. PubMed ID: 19896956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects.
    Ojima M; Ban N; Kai M
    Radiat Res; 2008 Sep; 170(3):365-71. PubMed ID: 18763860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistence of unrepaired DNA double strand breaks caused by inhibition of ATM does not lead to radio-sensitisation in the absence of NF-κB activation.
    Veuger SJ; Durkacz BW
    DNA Repair (Amst); 2011 Feb; 10(2):235-44. PubMed ID: 21144805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of heterochromatin on DSB repair.
    Goodarzi AA; Noon AT; Jeggo PA
    Biochem Soc Trans; 2009 Jun; 37(Pt 3):569-76. PubMed ID: 19442252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of phosphorylation sites on transcription factor Sp1 in response to DNA damage and its accumulation at damaged sites.
    Iwahori S; Yasui Y; Kudoh A; Sato Y; Nakayama S; Murata T; Isomura H; Tsurumi T
    Cell Signal; 2008 Oct; 20(10):1795-803. PubMed ID: 18619531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo γ-irradiation low dose threshold for suppression of DNA double strand breaks below the spontaneous level in mouse blood and spleen cells.
    Osipov AN; Buleeva G; Arkhangelskaya E; Klokov D
    Mutat Res; 2013 Aug; 756(1-2):141-5. PubMed ID: 23664857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation-induced unrepairable DSBs: their role in the late effects of radiation and possible applications to biodosimetry.
    Noda A
    J Radiat Res; 2018 Apr; 59(suppl_2):ii114-ii120. PubMed ID: 29281054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a high-content high-throughput screening assay for the discovery of ATM signaling inhibitors.
    Bardelle C; Boros J
    J Biomol Screen; 2012 Aug; 17(7):912-20. PubMed ID: 22653913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of DNA double-strand breaks in normal tissues after fractionated irradiation.
    Rübe CE; Fricke A; Wendorf J; Stützel A; Kühne M; Ong MF; Lipp P; Rübe C
    Int J Radiat Oncol Biol Phys; 2010 Mar; 76(4):1206-13. PubMed ID: 20206019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the cellular DNA double-strand break response.
    Cann KL; Hicks GG
    Biochem Cell Biol; 2007 Dec; 85(6):663-74. PubMed ID: 18059525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DNA double-strand break defective fibroblast cell line (180BR) derived from a radiosensitive patient represents a new mutant phenotype.
    Badie C; Goodhardt M; Waugh A; Doyen N; Foray N; Calsou P; Singleton B; Gell D; Salles B; Jeggo P; Arlett CF; Malaise EP
    Cancer Res; 1997 Oct; 57(20):4600-7. PubMed ID: 9377575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional cell growth confers radioresistance by chromatin density modification.
    Storch K; Eke I; Borgmann K; Krause M; Richter C; Becker K; Schröck E; Cordes N
    Cancer Res; 2010 May; 70(10):3925-34. PubMed ID: 20442295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cellular repair potential in families of ataxia-telangiectasia patients].
    Polubotko EA; Shatrova AN; Pleskach NM; Mikhel'son VM; Spivak IM
    Tsitologiia; 2009; 51(12):978-85. PubMed ID: 20141033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence.
    Park J; Jo YH; Cho CH; Choe W; Kang I; Baik HH; Yoon KS
    Biochem Biophys Res Commun; 2013 Jan; 430(1):429-35. PubMed ID: 23178571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation.
    MacLaren A; Black EJ; Clark W; Gillespie DA
    Mol Cell Biol; 2004 Oct; 24(20):9006-18. PubMed ID: 15456874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constitutive phosphorylation of ATM in lymphoblastoid cell lines from patients with ICF syndrome without downstream kinase activity.
    Goldstine JV; Nahas S; Gamo K; Gartler SM; Hansen RS; Roelfsema JH; Gatti RA; Marahrens Y
    DNA Repair (Amst); 2006 Apr; 5(4):432-43. PubMed ID: 16426903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.