These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 22899723)
1. Unrepairable DNA double-strand breaks that are generated by ionising radiation determine the fate of normal human cells. Noda A; Hirai Y; Hamasaki K; Mitani H; Nakamura N; Kodama Y J Cell Sci; 2012 Nov; 125(Pt 22):5280-7. PubMed ID: 22899723 [TBL] [Abstract][Full Text] [Related]
2. Regulation of ATM in DNA double strand break repair accounts for the radiosensitivity in human cells exposed to high linear energy transfer ionizing radiation. Xue L; Yu D; Furusawa Y; Okayasu R; Tong J; Cao J; Fan S Mutat Res; 2009 Nov; 670(1-2):15-23. PubMed ID: 19583974 [TBL] [Abstract][Full Text] [Related]
3. Modulation of the DNA-damage response to HZE particles by shielding. Mukherjee B; Camacho CV; Tomimatsu N; Miller J; Burma S DNA Repair (Amst); 2008 Oct; 7(10):1717-30. PubMed ID: 18672098 [TBL] [Abstract][Full Text] [Related]
4. Evidence of an adaptive response targeting DNA nonhomologous end joining and its transmission to bystander cells. Klammer H; Kadhim M; Iliakis G Cancer Res; 2010 Nov; 70(21):8498-506. PubMed ID: 20861183 [TBL] [Abstract][Full Text] [Related]
5. Inter-individual variation in DNA double-strand break repair in human fibroblasts before and after exposure to low doses of ionizing radiation. Wilson PF; Nham PB; Urbin SS; Hinz JM; Jones IM; Thompson LH Mutat Res; 2010 Jan; 683(1-2):91-7. PubMed ID: 19896956 [TBL] [Abstract][Full Text] [Related]
6. DNA double-strand breaks induced by very low X-ray doses are largely due to bystander effects. Ojima M; Ban N; Kai M Radiat Res; 2008 Sep; 170(3):365-71. PubMed ID: 18763860 [TBL] [Abstract][Full Text] [Related]
7. Persistence of unrepaired DNA double strand breaks caused by inhibition of ATM does not lead to radio-sensitisation in the absence of NF-κB activation. Veuger SJ; Durkacz BW DNA Repair (Amst); 2011 Feb; 10(2):235-44. PubMed ID: 21144805 [TBL] [Abstract][Full Text] [Related]
8. The impact of heterochromatin on DSB repair. Goodarzi AA; Noon AT; Jeggo PA Biochem Soc Trans; 2009 Jun; 37(Pt 3):569-76. PubMed ID: 19442252 [TBL] [Abstract][Full Text] [Related]
9. Identification of phosphorylation sites on transcription factor Sp1 in response to DNA damage and its accumulation at damaged sites. Iwahori S; Yasui Y; Kudoh A; Sato Y; Nakayama S; Murata T; Isomura H; Tsurumi T Cell Signal; 2008 Oct; 20(10):1795-803. PubMed ID: 18619531 [TBL] [Abstract][Full Text] [Related]
10. In vivo γ-irradiation low dose threshold for suppression of DNA double strand breaks below the spontaneous level in mouse blood and spleen cells. Osipov AN; Buleeva G; Arkhangelskaya E; Klokov D Mutat Res; 2013 Aug; 756(1-2):141-5. PubMed ID: 23664857 [TBL] [Abstract][Full Text] [Related]
11. Radiation-induced unrepairable DSBs: their role in the late effects of radiation and possible applications to biodosimetry. Noda A J Radiat Res; 2018 Apr; 59(suppl_2):ii114-ii120. PubMed ID: 29281054 [TBL] [Abstract][Full Text] [Related]
12. Development of a high-content high-throughput screening assay for the discovery of ATM signaling inhibitors. Bardelle C; Boros J J Biomol Screen; 2012 Aug; 17(7):912-20. PubMed ID: 22653913 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of DNA double-strand breaks in normal tissues after fractionated irradiation. Rübe CE; Fricke A; Wendorf J; Stützel A; Kühne M; Ong MF; Lipp P; Rübe C Int J Radiat Oncol Biol Phys; 2010 Mar; 76(4):1206-13. PubMed ID: 20206019 [TBL] [Abstract][Full Text] [Related]
14. Regulation of the cellular DNA double-strand break response. Cann KL; Hicks GG Biochem Cell Biol; 2007 Dec; 85(6):663-74. PubMed ID: 18059525 [TBL] [Abstract][Full Text] [Related]
15. A DNA double-strand break defective fibroblast cell line (180BR) derived from a radiosensitive patient represents a new mutant phenotype. Badie C; Goodhardt M; Waugh A; Doyen N; Foray N; Calsou P; Singleton B; Gell D; Salles B; Jeggo P; Arlett CF; Malaise EP Cancer Res; 1997 Oct; 57(20):4600-7. PubMed ID: 9377575 [TBL] [Abstract][Full Text] [Related]
16. Three-dimensional cell growth confers radioresistance by chromatin density modification. Storch K; Eke I; Borgmann K; Krause M; Richter C; Becker K; Schröck E; Cordes N Cancer Res; 2010 May; 70(10):3925-34. PubMed ID: 20442295 [TBL] [Abstract][Full Text] [Related]
17. [Cellular repair potential in families of ataxia-telangiectasia patients]. Polubotko EA; Shatrova AN; Pleskach NM; Mikhel'son VM; Spivak IM Tsitologiia; 2009; 51(12):978-85. PubMed ID: 20141033 [TBL] [Abstract][Full Text] [Related]
18. ATM-deficient human fibroblast cells are resistant to low levels of DNA double-strand break induced apoptosis and subsequently undergo drug-induced premature senescence. Park J; Jo YH; Cho CH; Choe W; Kang I; Baik HH; Yoon KS Biochem Biophys Res Commun; 2013 Jan; 430(1):429-35. PubMed ID: 23178571 [TBL] [Abstract][Full Text] [Related]
19. c-Jun-deficient cells undergo premature senescence as a result of spontaneous DNA damage accumulation. MacLaren A; Black EJ; Clark W; Gillespie DA Mol Cell Biol; 2004 Oct; 24(20):9006-18. PubMed ID: 15456874 [TBL] [Abstract][Full Text] [Related]
20. Constitutive phosphorylation of ATM in lymphoblastoid cell lines from patients with ICF syndrome without downstream kinase activity. Goldstine JV; Nahas S; Gamo K; Gartler SM; Hansen RS; Roelfsema JH; Gatti RA; Marahrens Y DNA Repair (Amst); 2006 Apr; 5(4):432-43. PubMed ID: 16426903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]