BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 2289975)

  • 1. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus.
    Reichling DB; Basbaum AI
    J Comp Neurol; 1990 Dec; 302(2):370-7. PubMed ID: 2289975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: II. Electron microscopic immunocytochemical evidence of GABAergic control over the projection from the periaqueductal gray to the nucleus raphe magnus in the rat.
    Reichling DB; Basbaum AI
    J Comp Neurol; 1990 Dec; 302(2):378-93. PubMed ID: 2289976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABAergic circuitry in the rostral ventral medulla of the rat and its relationship to descending antinociceptive controls.
    Cho HJ; Basbaum AI
    J Comp Neurol; 1991 Jan; 303(2):316-28. PubMed ID: 2013643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA; Basbaum AI
    J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of mu- and delta-opioid receptors to GABAergic neurons in the central nervous system, including antinociceptive brainstem circuits.
    Kalyuzhny AE; Wessendorf MW
    J Comp Neurol; 1998 Mar; 392(4):528-47. PubMed ID: 9514515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural morphometric analysis of GABA-immunoreactive terminals in the ventrocaudal periaqueductal grey: analysis of the relationship of GABA terminals and the GABAA receptor to periaqueductal grey-raphe magnus projection neurons.
    Williams FG; Beitz AJ
    J Neurocytol; 1990 Oct; 19(5):686-96. PubMed ID: 1706415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic regulation of noradrenergic spinal projection neurons of the A5 cell group in the rat: an electron microscopic analysis.
    Kwiat GC; Liu H; Williamson AM; Basbaum AI
    J Comp Neurol; 1993 Apr; 330(4):557-70. PubMed ID: 8320344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ascending input to the midbrain periaqueductal gray of the primate.
    Mantyh PW
    J Comp Neurol; 1982 Oct; 211(1):50-64. PubMed ID: 7174883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GABA-synthesizing neurons in the medulla: their relationship to serotonin-containing and spinally projecting neurons in the rat.
    Jones BE; Holmes CJ; Rodriguez-Veiga E; Mainville L
    J Comp Neurol; 1991 Nov; 313(2):349-67. PubMed ID: 1722490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collateralization of periaqueductal gray neurons to forebrain or diencephalon and to the medullary nucleus raphe magnus in the rat.
    Reichling DB; Basbaum AI
    Neuroscience; 1991; 42(1):183-200. PubMed ID: 1713655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projections from the periaqueductal gray matter to the B3 cellular area (nucleus raphe magnus and nucleus reticularis paragigantocellularis) as revealed by the retrograde transport of horseradish peroxidase in the rat.
    Fardin V; Oliveras JL; Besson JM
    J Comp Neurol; 1984 Mar; 223(4):483-500. PubMed ID: 6325508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for corticotropin-releasing hormone projections from Barrington's nucleus to the periaqueductal gray and dorsal motor nucleus of the vagus in the rat.
    Valentino RJ; Pavcovich LA; Hirata H
    J Comp Neurol; 1995 Dec; 363(3):402-22. PubMed ID: 8847408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of glutamate and aspartate to the periaqueductal gray-raphe magnus projection: analysis using immunocytochemistry and microdialysis.
    Beitz AJ
    J Histochem Cytochem; 1990 Dec; 38(12):1755-65. PubMed ID: 1701457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of tyrosine hydroxylase- and serotonin-immunoreactive brainstem neurons with axon collaterals to the periaqueductal gray and the spinal cord in the rat.
    Kwiat GC; Basbaum AI
    Brain Res; 1990 Sep; 528(1):83-94. PubMed ID: 1978796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential origin of brainstem serotoninergic projections to the midbrain periaqueductal gray and superior colliculus of the rat.
    Beitz AJ; Clements JR; Mullett MA; Ecklund LJ
    J Comp Neurol; 1986 Aug; 250(4):498-509. PubMed ID: 3760251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia.
    Coimbra NC; De Oliveira R; Freitas RL; Ribeiro SJ; Borelli KG; Pacagnella RC; Moreira JE; da Silva LA; Melo LL; Lunardi LO; Brandão ML
    Exp Neurol; 2006 Jan; 197(1):93-112. PubMed ID: 16303128
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Columnar organization of estrogen receptor-alpha immunoreactive neurons in the periaqueductal gray projecting to the nucleus para-retroambiguus in the caudal brainstem of the female golden hamster.
    Gerrits PO; Krukerink M; Veening JG
    Neuroscience; 2009 Jun; 161(2):459-74. PubMed ID: 19321152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study.
    Freitas RL; Ferreira CM; Ribeiro SJ; Carvalho AD; Elias-Filho DH; Garcia-Cairasco N; Coimbra NC
    Exp Neurol; 2005 Feb; 191(2):225-42. PubMed ID: 15649478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Participation of mu-opioid, GABA(B), and NK1 receptors of major pain control medullary areas in pathways targeting the rat spinal cord: implications for descending modulation of nociceptive transmission.
    Pinto M; Sousa M; Lima D; Tavares I
    J Comp Neurol; 2008 Sep; 510(2):175-87. PubMed ID: 18615498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GABAergic projection from the ventral tegmental area and substantia nigra to the periaqueductal gray region and the dorsal raphe nucleus.
    Kirouac GJ; Li S; Mabrouk G
    J Comp Neurol; 2004 Feb; 469(2):170-84. PubMed ID: 14694532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.