BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 22900019)

  • 21. The 'dark matter' in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin.
    Jiang J
    Curr Opin Plant Biol; 2015 Apr; 24():17-23. PubMed ID: 25625239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Open chromatin in plant genomes.
    Zhang W; Zhang T; Wu Y; Jiang J
    Cytogenet Genome Res; 2014; 143(1-3):18-27. PubMed ID: 24923879
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genome-scale mapping of DNase I hypersensitivity.
    John S; Sabo PJ; Canfield TK; Lee K; Vong S; Weaver M; Wang H; Vierstra J; Reynolds AP; Thurman RE; Stamatoyannopoulos JA
    Curr Protoc Mol Biol; 2013 Jul; Chapter 27():Unit 21.27. PubMed ID: 23821440
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome-Wide Identification of DNase I Hypersensitive Sites in Plants.
    Wang Y; Wang K
    Curr Protoc; 2021 Jun; 1(6):e148. PubMed ID: 34101388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proliferation of Regulatory DNA Elements Derived from Transposable Elements in the Maize Genome.
    Zhao H; Zhang W; Chen L; Wang L; Marand AP; Wu Y; Jiang J
    Plant Physiol; 2018 Apr; 176(4):2789-2803. PubMed ID: 29463772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unveiling the gene regulatory landscape in diseases through the identification of DNase I-hypersensitive sites.
    Chen Y; Chen A
    Biomed Rep; 2019 Sep; 11(3):87-97. PubMed ID: 31423302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genome-wide mapping of DNase I hypersensitive sites and association analysis with gene expression in MSB1 cells.
    He Y; Carrillo JA; Luo J; Ding Y; Tian F; Davidson I; Song J
    Front Genet; 2014; 5():308. PubMed ID: 25352859
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comprehensive characterization of erythroid-specific enhancers in the genomic regions of human Krüppel-like factors.
    Xiong Q; Zhang Z; Chang KH; Qu H; Wang H; Qi H; Li Y; Ruan X; Yang Y; Yang Y; Li Y; Sandstrom R; Sabo PJ; Li Q; Stamatoyannopoulos G; Stamatoyannopoulos JA; Fang X
    BMC Genomics; 2013 Aug; 14():587. PubMed ID: 23985037
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of deletion of the DNase I hypersensitive sites on the transcription of chicken Ig-beta gene and on the maintenance of active chromatin state in the Ig-beta locus.
    Matsudo H; Osano K; Arakawa H; Ono M
    FEBS J; 2005 Jan; 272(2):422-32. PubMed ID: 15654880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of DNase-I-hypersensitive sites at the 3' end of the cystic fibrosis transmembrane conductance regulator gene (CFTR).
    Nuthall HN; Moulin DS; Huxley C; Harris A
    Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):601-11. PubMed ID: 10417323
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A binding protein to the DNase I hypersensitive site II in HLA-DR alpha gene was identified as NF90.
    Sakamoto S; Morisawa K; Ota K; Nie J; Taniguchi T
    Biochemistry; 1999 Mar; 38(11):3355-61. PubMed ID: 10079079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DNase I SIM: A Simplified In-Nucleus Method for DNase I Hypersensitive Site Sequencing.
    Filichkin SA; Megraw M
    Methods Mol Biol; 2017; 1629():141-154. PubMed ID: 28623584
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide mapping of DNase I hypersensitive sites reveals chromatin accessibility changes in Arabidopsis euchromatin and heterochromatin regions under extended darkness.
    Liu Y; Zhang W; Zhang K; You Q; Yan H; Jiao Y; Jiang J; Xu W; Su Z
    Sci Rep; 2017 Jun; 7(1):4093. PubMed ID: 28642500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chromatin Accessibility Landscape in Human Early Embryos and Its Association with Evolution.
    Gao L; Wu K; Liu Z; Yao X; Yuan S; Tao W; Yi L; Yu G; Hou Z; Fan D; Tian Y; Liu J; Chen ZJ; Liu J
    Cell; 2018 Mar; 173(1):248-259.e15. PubMed ID: 29526463
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNase I digestion of isolated nulcei for genome-wide mapping of DNase hypersensitivity sites in chromatin.
    Ling G; Waxman DJ
    Methods Mol Biol; 2013; 977():21-33. PubMed ID: 23436351
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolution of DNAase I Hypersensitive Sites in MHC Regulatory Regions of Primates.
    Jin Y; Gittelman RM; Lu Y; Liu X; Li MD; Ling F; Akey JM
    Genetics; 2018 Jun; 209(2):579-589. PubMed ID: 29669733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mapping regulatory elements by DNaseI hypersensitivity chip (DNase-Chip).
    Shibata Y; Crawford GE
    Methods Mol Biol; 2009; 556():177-90. PubMed ID: 19488879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. cis-Acting elements and transcription factors involved in the intestinal specific expression of the rat calbindin-D9K gene: binding of the intestine-specific transcription factor Cdx-2 to the TATA box.
    Lambert M; Colnot S; Suh E; L'Horset F; Blin C; Calliot ME; Raymondjean M; Thomasset M; Traber PG; Perret C
    Eur J Biochem; 1996 Mar; 236(3):778-88. PubMed ID: 8665895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of a DNase I hypersensitive site located -20.9 kb upstream of the CFTR gene.
    Nuthall HN; Vassaux G; Huxley C; Harris A
    Eur J Biochem; 1999 Dec; 266(2):431-43. PubMed ID: 10561583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning for DNase I hypersensitive sites identification.
    Lyu C; Wang L; Zhang J
    BMC Genomics; 2018 Dec; 19(Suppl 10):905. PubMed ID: 30598079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.