BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 22900096)

  • 1. Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS.
    Shiga A; Ishihara T; Miyashita A; Kuwabara M; Kato T; Watanabe N; Yamahira A; Kondo C; Yokoseki A; Takahashi M; Kuwano R; Kakita A; Nishizawa M; Takahashi H; Onodera O
    PLoS One; 2012; 7(8):e43120. PubMed ID: 22900096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones.
    Highley JR; Kirby J; Jansweijer JA; Webb PS; Hewamadduma CA; Heath PR; Higginbottom A; Raman R; Ferraiuolo L; Cooper-Knock J; McDermott CJ; Wharton SB; Shaw PJ; Ince PG
    Neuropathol Appl Neurobiol; 2014 Oct; 40(6):670-85. PubMed ID: 24750229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased number of Gemini of coiled bodies and U12 snRNA level in amyotrophic lateral sclerosis.
    Ishihara T; Ariizumi Y; Shiga A; Kato T; Tan CF; Sato T; Miki Y; Yokoo M; Fujino T; Koyama A; Yokoseki A; Nishizawa M; Kakita A; Takahashi H; Onodera O
    Hum Mol Genet; 2013 Oct; 22(20):4136-47. PubMed ID: 23740936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS).
    Volkening K; Leystra-Lantz C; Yang W; Jaffee H; Strong MJ
    Brain Res; 2009 Dec; 1305():168-82. PubMed ID: 19815002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43.
    Koyama A; Sugai A; Kato T; Ishihara T; Shiga A; Toyoshima Y; Koyama M; Konno T; Hirokawa S; Yokoseki A; Nishizawa M; Kakita A; Takahashi H; Onodera O
    Nucleic Acids Res; 2016 Jul; 44(12):5820-36. PubMed ID: 27257061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of cryptic splicing associated with TDP-43 depletion.
    Humphrey J; Emmett W; Fratta P; Isaacs AM; Plagnol V
    BMC Med Genomics; 2017 May; 10(1):38. PubMed ID: 28549443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis.
    Deshaies JE; Shkreta L; Moszczynski AJ; Sidibé H; Semmler S; Fouillen A; Bennett ER; Bekenstein U; Destroismaisons L; Toutant J; Delmotte Q; Volkening K; Stabile S; Aulas A; Khalfallah Y; Soreq H; Nanci A; Strong MJ; Chabot B; Vande Velde C
    Brain; 2018 May; 141(5):1320-1333. PubMed ID: 29562314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models.
    Colombrita C; Onesto E; Buratti E; de la Grange P; Gumina V; Baralle FE; Silani V; Ratti A
    Biochim Biophys Acta; 2015 Dec; 1849(12):1398-410. PubMed ID: 26514432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death.
    Xiao S; Sanelli T; Chiang H; Sun Y; Chakrabartty A; Keith J; Rogaeva E; Zinman L; Robertson J
    Acta Neuropathol; 2015 Jul; 130(1):49-61. PubMed ID: 25788357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A panel of TDP-43-regulated splicing events verifies loss of TDP-43 function in amyotrophic lateral sclerosis brain tissue.
    Cao MC; Ryan B; Wu J; Curtis MA; Faull RLM; Dragunow M; Scotter EL
    Neurobiol Dis; 2023 Sep; 185():106245. PubMed ID: 37527763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis.
    Fratta P; Sivakumar P; Humphrey J; Lo K; Ricketts T; Oliveira H; Brito-Armas JM; Kalmar B; Ule A; Yu Y; Birsa N; Bodo C; Collins T; Conicella AE; Mejia Maza A; Marrero-Gagliardi A; Stewart M; Mianne J; Corrochano S; Emmett W; Codner G; Groves M; Fukumura R; Gondo Y; Lythgoe M; Pauws E; Peskett E; Stanier P; Teboul L; Hallegger M; Calvo A; Chiò A; Isaacs AM; Fawzi NL; Wang E; Housman DE; Baralle F; Greensmith L; Buratti E; Plagnol V; Fisher EM; Acevedo-Arozena A
    EMBO J; 2018 Jun; 37(11):. PubMed ID: 29764981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aberrant NOVA1 function disrupts alternative splicing in early stages of amyotrophic lateral sclerosis.
    Krach F; Wheeler EC; Regensburger M; Boerstler T; Wend H; Vu AQ; Wang R; Reischl S; Boldt K; Batra R; Aigner S; Ravits J; Winkler J; Yeo GW; Winner B
    Acta Neuropathol; 2022 Sep; 144(3):413-435. PubMed ID: 35778567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43.
    Arnold ES; Ling SC; Huelga SC; Lagier-Tourenne C; Polymenidou M; Ditsworth D; Kordasiewicz HB; McAlonis-Downes M; Platoshyn O; Parone PA; Da Cruz S; Clutario KM; Swing D; Tessarollo L; Marsala M; Shaw CE; Yeo GW; Cleveland DW
    Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E736-45. PubMed ID: 23382207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis.
    MacNair L; Xiao S; Miletic D; Ghani M; Julien JP; Keith J; Zinman L; Rogaeva E; Robertson J
    Brain; 2016 Jan; 139(Pt 1):86-100. PubMed ID: 26525917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs.
    Lagier-Tourenne C; Polymenidou M; Hutt KR; Vu AQ; Baughn M; Huelga SC; Clutario KM; Ling SC; Liang TY; Mazur C; Wancewicz E; Kim AS; Watt A; Freier S; Hicks GG; Donohue JP; Shiue L; Bennett CF; Ravits J; Cleveland DW; Yeo GW
    Nat Neurosci; 2012 Nov; 15(11):1488-97. PubMed ID: 23023293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy.
    Turner BJ; Bäumer D; Parkinson NJ; Scaber J; Ansorge O; Talbot K
    BMC Neurosci; 2008 Oct; 9():104. PubMed ID: 18957104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A robust TDP-43 knock-in mouse model of ALS.
    Huang SL; Wu LS; Lee M; Chang CW; Cheng WC; Fang YS; Chen YR; Cheng PL; Shen CJ
    Acta Neuropathol Commun; 2020 Jan; 8(1):3. PubMed ID: 31964415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients.
    Collins M; Riascos D; Kovalik T; An J; Krupa K; Krupa K; Hood BL; Conrads TP; Renton AE; Traynor BJ; Bowser R
    Acta Neuropathol; 2012 Nov; 124(5):717-32. PubMed ID: 22993125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing repression is a major function of TDP-43 in motor neurons.
    Donde A; Sun M; Ling JP; Braunstein KE; Pang B; Wen X; Cheng X; Chen L; Wong PC
    Acta Neuropathol; 2019 Nov; 138(5):813-826. PubMed ID: 31332509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A.
    Ma XR; Prudencio M; Koike Y; Vatsavayai SC; Kim G; Harbinski F; Briner A; Rodriguez CM; Guo C; Akiyama T; Schmidt HB; Cummings BB; Wyatt DW; Kurylo K; Miller G; Mekhoubad S; Sallee N; Mekonnen G; Ganser L; Rubien JD; Jansen-West K; Cook CN; Pickles S; Oskarsson B; Graff-Radford NR; Boeve BF; Knopman DS; Petersen RC; Dickson DW; Shorter J; Myong S; Green EM; Seeley WW; Petrucelli L; Gitler AD
    Nature; 2022 Mar; 603(7899):124-130. PubMed ID: 35197626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.