These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 22900096)
1. Alteration of POLDIP3 splicing associated with loss of function of TDP-43 in tissues affected with ALS. Shiga A; Ishihara T; Miyashita A; Kuwabara M; Kato T; Watanabe N; Yamahira A; Kondo C; Yokoseki A; Takahashi M; Kuwano R; Kakita A; Nishizawa M; Takahashi H; Onodera O PLoS One; 2012; 7(8):e43120. PubMed ID: 22900096 [TBL] [Abstract][Full Text] [Related]
2. Loss of nuclear TDP-43 in amyotrophic lateral sclerosis (ALS) causes altered expression of splicing machinery and widespread dysregulation of RNA splicing in motor neurones. Highley JR; Kirby J; Jansweijer JA; Webb PS; Hewamadduma CA; Heath PR; Higginbottom A; Raman R; Ferraiuolo L; Cooper-Knock J; McDermott CJ; Wharton SB; Shaw PJ; Ince PG Neuropathol Appl Neurobiol; 2014 Oct; 40(6):670-85. PubMed ID: 24750229 [TBL] [Abstract][Full Text] [Related]
3. Decreased number of Gemini of coiled bodies and U12 snRNA level in amyotrophic lateral sclerosis. Ishihara T; Ariizumi Y; Shiga A; Kato T; Tan CF; Sato T; Miki Y; Yokoo M; Fujino T; Koyama A; Yokoseki A; Nishizawa M; Kakita A; Takahashi H; Onodera O Hum Mol Genet; 2013 Oct; 22(20):4136-47. PubMed ID: 23740936 [TBL] [Abstract][Full Text] [Related]
4. Tar DNA binding protein of 43 kDa (TDP-43), 14-3-3 proteins and copper/zinc superoxide dismutase (SOD1) interact to modulate NFL mRNA stability. Implications for altered RNA processing in amyotrophic lateral sclerosis (ALS). Volkening K; Leystra-Lantz C; Yang W; Jaffee H; Strong MJ Brain Res; 2009 Dec; 1305():168-82. PubMed ID: 19815002 [TBL] [Abstract][Full Text] [Related]
5. Increased cytoplasmic TARDBP mRNA in affected spinal motor neurons in ALS caused by abnormal autoregulation of TDP-43. Koyama A; Sugai A; Kato T; Ishihara T; Shiga A; Toyoshima Y; Koyama M; Konno T; Hirokawa S; Yokoseki A; Nishizawa M; Kakita A; Takahashi H; Onodera O Nucleic Acids Res; 2016 Jul; 44(12):5820-36. PubMed ID: 27257061 [TBL] [Abstract][Full Text] [Related]
6. Quantitative analysis of cryptic splicing associated with TDP-43 depletion. Humphrey J; Emmett W; Fratta P; Isaacs AM; Plagnol V BMC Med Genomics; 2017 May; 10(1):38. PubMed ID: 28549443 [TBL] [Abstract][Full Text] [Related]
7. TDP-43 regulates the alternative splicing of hnRNP A1 to yield an aggregation-prone variant in amyotrophic lateral sclerosis. Deshaies JE; Shkreta L; Moszczynski AJ; Sidibé H; Semmler S; Fouillen A; Bennett ER; Bekenstein U; Destroismaisons L; Toutant J; Delmotte Q; Volkening K; Stabile S; Aulas A; Khalfallah Y; Soreq H; Nanci A; Strong MJ; Chabot B; Vande Velde C Brain; 2018 May; 141(5):1320-1333. PubMed ID: 29562314 [TBL] [Abstract][Full Text] [Related]
8. From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. Colombrita C; Onesto E; Buratti E; de la Grange P; Gumina V; Baralle FE; Silani V; Ratti A Biochim Biophys Acta; 2015 Dec; 1849(12):1398-410. PubMed ID: 26514432 [TBL] [Abstract][Full Text] [Related]
9. Low molecular weight species of TDP-43 generated by abnormal splicing form inclusions in amyotrophic lateral sclerosis and result in motor neuron death. Xiao S; Sanelli T; Chiang H; Sun Y; Chakrabartty A; Keith J; Rogaeva E; Zinman L; Robertson J Acta Neuropathol; 2015 Jul; 130(1):49-61. PubMed ID: 25788357 [TBL] [Abstract][Full Text] [Related]
10. A panel of TDP-43-regulated splicing events verifies loss of TDP-43 function in amyotrophic lateral sclerosis brain tissue. Cao MC; Ryan B; Wu J; Curtis MA; Faull RLM; Dragunow M; Scotter EL Neurobiol Dis; 2023 Sep; 185():106245. PubMed ID: 37527763 [TBL] [Abstract][Full Text] [Related]
11. Mice with endogenous TDP-43 mutations exhibit gain of splicing function and characteristics of amyotrophic lateral sclerosis. Fratta P; Sivakumar P; Humphrey J; Lo K; Ricketts T; Oliveira H; Brito-Armas JM; Kalmar B; Ule A; Yu Y; Birsa N; Bodo C; Collins T; Conicella AE; Mejia Maza A; Marrero-Gagliardi A; Stewart M; Mianne J; Corrochano S; Emmett W; Codner G; Groves M; Fukumura R; Gondo Y; Lythgoe M; Pauws E; Peskett E; Stanier P; Teboul L; Hallegger M; Calvo A; Chiò A; Isaacs AM; Fawzi NL; Wang E; Housman DE; Baralle F; Greensmith L; Buratti E; Plagnol V; Fisher EM; Acevedo-Arozena A EMBO J; 2018 Jun; 37(11):. PubMed ID: 29764981 [TBL] [Abstract][Full Text] [Related]
12. Aberrant NOVA1 function disrupts alternative splicing in early stages of amyotrophic lateral sclerosis. Krach F; Wheeler EC; Regensburger M; Boerstler T; Wend H; Vu AQ; Wang R; Reischl S; Boldt K; Batra R; Aigner S; Ravits J; Winkler J; Yeo GW; Winner B Acta Neuropathol; 2022 Sep; 144(3):413-435. PubMed ID: 35778567 [TBL] [Abstract][Full Text] [Related]
13. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Arnold ES; Ling SC; Huelga SC; Lagier-Tourenne C; Polymenidou M; Ditsworth D; Kordasiewicz HB; McAlonis-Downes M; Platoshyn O; Parone PA; Da Cruz S; Clutario KM; Swing D; Tessarollo L; Marsala M; Shaw CE; Yeo GW; Cleveland DW Proc Natl Acad Sci U S A; 2013 Feb; 110(8):E736-45. PubMed ID: 23382207 [TBL] [Abstract][Full Text] [Related]
14. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis. MacNair L; Xiao S; Miletic D; Ghani M; Julien JP; Keith J; Zinman L; Rogaeva E; Robertson J Brain; 2016 Jan; 139(Pt 1):86-100. PubMed ID: 26525917 [TBL] [Abstract][Full Text] [Related]
15. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Lagier-Tourenne C; Polymenidou M; Hutt KR; Vu AQ; Baughn M; Huelga SC; Clutario KM; Ling SC; Liang TY; Mazur C; Wancewicz E; Kim AS; Watt A; Freier S; Hicks GG; Donohue JP; Shiue L; Bennett CF; Ravits J; Cleveland DW; Yeo GW Nat Neurosci; 2012 Nov; 15(11):1488-97. PubMed ID: 23023293 [TBL] [Abstract][Full Text] [Related]
16. TDP-43 expression in mouse models of amyotrophic lateral sclerosis and spinal muscular atrophy. Turner BJ; Bäumer D; Parkinson NJ; Scaber J; Ansorge O; Talbot K BMC Neurosci; 2008 Oct; 9():104. PubMed ID: 18957104 [TBL] [Abstract][Full Text] [Related]
17. A robust TDP-43 knock-in mouse model of ALS. Huang SL; Wu LS; Lee M; Chang CW; Cheng WC; Fang YS; Chen YR; Cheng PL; Shen CJ Acta Neuropathol Commun; 2020 Jan; 8(1):3. PubMed ID: 31964415 [TBL] [Abstract][Full Text] [Related]
18. The RNA-binding motif 45 (RBM45) protein accumulates in inclusion bodies in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) patients. Collins M; Riascos D; Kovalik T; An J; Krupa K; Krupa K; Hood BL; Conrads TP; Renton AE; Traynor BJ; Bowser R Acta Neuropathol; 2012 Nov; 124(5):717-32. PubMed ID: 22993125 [TBL] [Abstract][Full Text] [Related]
19. Splicing repression is a major function of TDP-43 in motor neurons. Donde A; Sun M; Ling JP; Braunstein KE; Pang B; Wen X; Cheng X; Chen L; Wong PC Acta Neuropathol; 2019 Nov; 138(5):813-826. PubMed ID: 31332509 [TBL] [Abstract][Full Text] [Related]