BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22900295)

  • 21. Biological significance of phosphorylation and myristoylation in the regulation of cardiac muscle proteins.
    Raju RV; Kakkar R; Radhi JM; Sharma RK
    Mol Cell Biochem; 1997 Nov; 176(1-2):135-43. PubMed ID: 9406155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca(2+)/calmodulin-activated phosphodiesterase 1A is highly expressed in rabbit cardiac sinoatrial nodal cells and regulates pacemaker function.
    Lukyanenko YO; Younes A; Lyashkov AE; Tarasov KV; Riordon DR; Lee J; Sirenko SG; Kobrinsky E; Ziman B; Tarasova YS; Juhaszova M; Sollott SJ; Graham DR; Lakatta EG
    J Mol Cell Cardiol; 2016 Sep; 98():73-82. PubMed ID: 27363295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitory effects of flavonoids on phosphodiesterase isozymes from guinea pig and their structure-activity relationships.
    Ko WC; Shih CM; Lai YH; Chen JH; Huang HL
    Biochem Pharmacol; 2004 Nov; 68(10):2087-94. PubMed ID: 15476679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphorylation of calmodulin alters its potency as an activator of target enzymes.
    Quadroni M; L'Hostis EL; Corti C; Myagkikh I; Durussel I; Cox J; James P; Carafoli E
    Biochemistry; 1998 May; 37(18):6523-32. PubMed ID: 9572870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The flavonoid dioclein is a selective inhibitor of cyclic nucleotide phosphodiesterase type 1 (PDE1) and a cGMP-dependent protein kinase (PKG) vasorelaxant in human vascular tissue.
    Gonçalves RL; Lugnier C; Keravis T; Lopes MJ; Fantini FA; Schmitt M; Cortes SF; Lemos VS
    Eur J Pharmacol; 2009 Oct; 620(1-3):78-83. PubMed ID: 19686719
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of Ca2+/calmodulin-stimulated phosphodiesterase activity in intact cells.
    Yan C
    Methods Mol Biol; 2005; 307():85-92. PubMed ID: 15988057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparative kinetic study of bovine calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes utilizing cAMP, cGMP and their 2'-O-anthraniloyl-,2'-O-(N-methylanthraniloyl)-derivatives as substrates.
    Grewal J; Karuppiah N; Mutus B
    Biochem Int; 1989 Dec; 19(6):1287-95. PubMed ID: 2561449
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of contractile activity in vascular smooth muscle by protein kinases.
    Silver PJ
    Rev Clin Basic Pharm; 1985; 5(3-4):341-95. PubMed ID: 3029813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence comparison of the 63-, 61-, and 59-kDa calmodulin-dependent cyclic nucleotide phosphodiesterases.
    Novack JP; Charbonneau H; Bentley JK; Walsh KA; Beavo JA
    Biochemistry; 1991 Aug; 30(32):7940-7. PubMed ID: 1651112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic properties of Ca2+/calmodulin-dependent phosphodiesterase isoforms dictate intracellular cAMP dynamics in response to elevation of cytosolic Ca2+.
    Goraya TA; Masada N; Ciruela A; Willoughby D; Clynes MA; Cooper DM
    Cell Signal; 2008 Feb; 20(2):359-74. PubMed ID: 18335582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Ca
    Kogiso H; Hosogi S; Ikeuchi Y; Tanaka S; Inui T; Marunaka Y; Nakahari T
    Exp Physiol; 2018 Mar; 103(3):381-390. PubMed ID: 29282782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases.
    Sonnenburg WK; Seger D; Kwak KS; Huang J; Charbonneau H; Beavo JA
    J Biol Chem; 1995 Dec; 270(52):30989-1000. PubMed ID: 8537356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic activity of the CaM-PDE1 system upon addition of actinyl ions.
    Brulfert F; Safi S; Jeanson A; Foerstendorf H; Weiss S; Berthomieu C; Sauge-Merle S; Simoni É
    J Inorg Biochem; 2017 Jul; 172():46-54. PubMed ID: 28427004
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes.
    Sharma RK; Kalra J
    Biochem J; 1994 Apr; 299 ( Pt 1)(Pt 1):97-100. PubMed ID: 8166665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of cyclic nucleotide phosphodiesterases with cyclic AMP analogs: topology of the catalytic sites and comparison with other cyclic AMP-binding proteins.
    Butt E; Beltman J; Becker DE; Jensen GS; Rybalkin SD; Jastorff B; Beavo JA
    Mol Pharmacol; 1995 Feb; 47(2):340-7. PubMed ID: 7870042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphodiesterase 1: A Unique Drug Target for Degenerative Diseases and Cognitive Dysfunction.
    Wennogle LP; Hoxie H; Peng Y; Hendrick JP
    Adv Neurobiol; 2017; 17():349-384. PubMed ID: 28956339
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and selective inhibition of cyclic nucleotide phosphodiesterase isozymes in canine tracheal smooth muscle.
    Torphy TJ; Cieslinski LB
    Mol Pharmacol; 1990 Feb; 37(2):206-14. PubMed ID: 2154670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin.
    Yuan T; Walsh MP; Sutherland C; Fabian H; Vogel HJ
    Biochemistry; 1999 Feb; 38(5):1446-55. PubMed ID: 9931009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crustacean molt-inhibiting hormone: structure, function, and cellular mode of action.
    Nakatsuji T; Lee CY; Watson RD
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):139-48. PubMed ID: 19000932
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TcrPDEA1, a cAMP-specific phosphodiesterase with atypical pharmacological properties from Trypanosoma cruzi.
    Alonso GD; Schoijet AC; Torres HN; Flawiá MM
    Mol Biochem Parasitol; 2007 Mar; 152(1):72-9. PubMed ID: 17222469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.