These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22900499)

  • 1. Heterogeneous evolutionary rates of Pi2/9 homologs in rice.
    Wu K; Xu T; Guo C; Zhang X; Yang S
    BMC Genet; 2012 Aug; 13():73. PubMed ID: 22900499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease.
    Yang S; Li J; Zhang X; Zhang Q; Huang J; Chen JQ; Hartl DL; Tian D
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18572-7. PubMed ID: 24145399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice.
    Zhou B; Dolan M; Sakai H; Wang GL
    Mol Plant Microbe Interact; 2007 Jan; 20(1):63-71. PubMed ID: 17249423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive evolution of Xa21 homologs in Gramineae.
    Tan S; Wang D; Ding J; Tian D; Zhang X; Yang S
    Genetica; 2011 Dec; 139(11-12):1465-75. PubMed ID: 22451352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus.
    Su J; Wang W; Han J; Chen S; Wang C; Zeng L; Feng A; Yang J; Zhou B; Zhu X
    Theor Appl Genet; 2015 Nov; 128(11):2213-25. PubMed ID: 26183036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomic structure and evolution of the Pi2/9 locus in wild rice species.
    Dai L; Wu J; Li X; Wang X; Liu X; Jantasuriyarat C; Kudrna D; Yu Y; Wing RA; Han B; Zhou B; Wang GL
    Theor Appl Genet; 2010 Jul; 121(2):295-309. PubMed ID: 20229250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson.
    Jiang N; Li Z; Wu J; Wang Y; Wu L; Wang S; Wang D; Wen T; Liang Y; Sun P; Liu J; Dai L; Wang Z; Wang C; Luo M; Liu X; Wang GL
    Rice (N Y); 2012 Dec; 5(1):29. PubMed ID: 27234247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary analysis of RB/Rpi-blb1 locus in the Solanaceae family.
    Xie Z; Si W; Gao R; Zhang X; Yang S
    Mol Genet Genomics; 2015 Dec; 290(6):2173-86. PubMed ID: 26008792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea.
    Zhou B; Qu S; Liu G; Dolan M; Sakai H; Lu G; Bellizzi M; Wang GL
    Mol Plant Microbe Interact; 2006 Nov; 19(11):1216-28. PubMed ID: 17073304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative Genomics Analysis in Grass Species Reveals Two Distinct Evolutionary Strategies Adopted by R Genes.
    Zhang Y; Guo M; Shen J; Song X; Dong S; Wen Y; Yuan X; Guo P
    Sci Rep; 2019 Jul; 9(1):10735. PubMed ID: 31341223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Allele-mining of rice blast resistance genes at AC134922 locus.
    Wang D; Guo C; Huang J; Yang S; Tian D; Zhang X
    Biochem Biophys Res Commun; 2014 Apr; 446(4):1085-90. PubMed ID: 24661882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.
    Guo C; Sun X; Chen X; Yang S; Li J; Wang L; Zhang X
    Plant Mol Biol; 2016 Jan; 90(1-2):95-105. PubMed ID: 26530637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1.
    Lin F; Chen S; Que Z; Wang L; Liu X; Pan Q
    Genetics; 2007 Nov; 177(3):1871-80. PubMed ID: 17947408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon.
    Chen L; Hu W; Tan S; Wang M; Ma Z; Zhou S; Deng X; Zhang Y; Huang C; Yang G; He G
    PLoS One; 2012; 7(10):e46744. PubMed ID: 23082129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique evolutionary pattern of numbers of gramineous NBS-LRR genes.
    Li J; Ding J; Zhang W; Zhang Y; Tang P; Chen JQ; Tian D; Yang S
    Mol Genet Genomics; 2010 May; 283(5):427-38. PubMed ID: 20217430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequent sequence exchanges between homologs of RPP8 in Arabidopsis are not necessarily associated with genomic proximity.
    Kuang H; Caldwell KS; Meyers BC; Michelmore RW
    Plant J; 2008 Apr; 54(1):69-80. PubMed ID: 18182023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification and comparative analysis of phosphate starvation-responsive transcription factors in maize and three other gramineous plants.
    Xu Y; Liu F; Han G; Cheng B
    Plant Cell Rep; 2018 May; 37(5):711-726. PubMed ID: 29396709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Annotation and comparative analysis of the glycoside hydrolase genes in Brachypodium distachyon.
    Tyler L; Bragg JN; Wu J; Yang X; Tuskan GA; Vogel JP
    BMC Genomics; 2010 Oct; 11():600. PubMed ID: 20973991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes.
    Zhou T; Wang Y; Chen JQ; Araki H; Jing Z; Jiang K; Shen J; Tian D
    Mol Genet Genomics; 2004 May; 271(4):402-15. PubMed ID: 15014983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of alternative first exons in plant genomes.
    Chen WH; Lv G; Lv C; Zeng C; Hu S
    BMC Plant Biol; 2007 Oct; 7():55. PubMed ID: 17941993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.