BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 22901013)

  • 1. Binding interaction of HMGB4 with cisplatin-modified DNA.
    Park S; Lippard SJ
    Biochemistry; 2012 Aug; 51(34):6728-37. PubMed ID: 22901013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nature of full-length HMGB1 binding to cisplatin-modified DNA.
    Jung Y; Lippard SJ
    Biochemistry; 2003 Mar; 42(9):2664-71. PubMed ID: 12614161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox state-dependent interaction of HMGB1 and cisplatin-modified DNA.
    Park S; Lippard SJ
    Biochemistry; 2011 Apr; 50(13):2567-74. PubMed ID: 21355578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Repair shielding of platinum-DNA lesions in testicular germ cell tumors by high-mobility group box protein 4 imparts cisplatin hypersensitivity.
    Awuah SG; Riddell IA; Lippard SJ
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):950-955. PubMed ID: 28096358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding to cisplatin-modified DNA by the Saccharomyces cerevisiae HMGB protein Nhp6A.
    Wong B; Masse JE; Yen YM; Giannikopoulos P; Feigon J; Johnson RC
    Biochemistry; 2002 Apr; 41(17):5404-14. PubMed ID: 11969400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human testis-determining factor SRY binds to the major DNA adduct of cisplatin and a putative target sequence with comparable affinities.
    Trimmer EE; Zamble DB; Lippard SJ; Essigmann JM
    Biochemistry; 1998 Jan; 37(1):352-62. PubMed ID: 9425057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Repair of cisplatin--DNA adducts by the mammalian excision nuclease.
    Zamble DB; Mu D; Reardon JT; Sancar A; Lippard SJ
    Biochemistry; 1996 Aug; 35(31):10004-13. PubMed ID: 8756462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single HMG domain in high-mobility group 1 protein binds to DNAs as small as 20 base pairs containing the major cisplatin adduct.
    Chow CS; Barnes CM; Lippard SJ
    Biochemistry; 1995 Mar; 34(9):2956-64. PubMed ID: 7893709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between cisplatin-modified DNA and the HMG boxes of HMG 1: DNase I footprinting and circular dichroism.
    Locker D; Decoville M; Maurizot JC; Bianchi ME; Leng M
    J Mol Biol; 1995 Feb; 246(2):243-7. PubMed ID: 7869375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition of DNA interstrand cross-link of antitumor cisplatin by HMGB1 protein.
    Kasparkova J; Delalande O; Stros M; Elizondo-Riojas MA; Vojtiskova M; Kozelka J; Brabec V
    Biochemistry; 2003 Feb; 42(5):1234-44. PubMed ID: 12564926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA sequence context and protein composition modulate HMG-domain protein recognition of cisplatin-modified DNA.
    Dunham SU; Lippard SJ
    Biochemistry; 1997 Sep; 36(38):11428-36. PubMed ID: 9298962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HMG-domain protein recognition of cisplatin 1,2-intrastrand d(GpG) cross-links in purine-rich sequence contexts.
    Cohen SM; Mikata Y; He Q; Lippard SJ
    Biochemistry; 2000 Sep; 39(38):11771-6. PubMed ID: 10995245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins.
    Ohndorf UM; Rould MA; He Q; Pabo CO; Lippard SJ
    Nature; 1999 Jun; 399(6737):708-12. PubMed ID: 10385126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding of tsHMG, a mouse testis-specific HMG-domain protein, to cisplatin-DNA adducts.
    Ohndorf UM; Whitehead JP; Raju NL; Lippard SJ
    Biochemistry; 1997 Dec; 36(48):14807-15. PubMed ID: 9398202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercalating residues determine the mode of HMG1 domains A and B binding to cisplatin-modified DNA.
    He Q; Ohndorf UM; Lippard SJ
    Biochemistry; 2000 Nov; 39(47):14426-35. PubMed ID: 11087395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HMGB4, a novel member of the HMGB family, is preferentially expressed in the mouse testis and localizes to the basal pole of elongating spermatids.
    Catena R; Escoffier E; Caron C; Khochbin S; Martianov I; Davidson I
    Biol Reprod; 2009 Feb; 80(2):358-66. PubMed ID: 18987332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of novel plasmid constructs to demonstrate fludarabine triphosphate inhibition of nucleotide excision repair of a site-specific 1,2-d(GpG) intrastrand cisplatin adduct.
    Li MJ; Yang LY
    Int J Oncol; 1999 Dec; 15(6):1177-83. PubMed ID: 10568825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleocytoplasmic distribution of the Arabidopsis chromatin-associated HMGB2/3 and HMGB4 proteins.
    Pedersen DS; Merkle T; Marktl B; Lildballe DL; Antosch M; Bergmann T; Tönsing K; Anselmetti D; Grasser KD
    Plant Physiol; 2010 Dec; 154(4):1831-41. PubMed ID: 20940346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 1,2-d(GpG) cisplatin intrastrand cross-link influences the rotational and translational setting of DNA in nucleosomes.
    Ober M; Lippard SJ
    J Am Chem Soc; 2008 Mar; 130(9):2851-61. PubMed ID: 18269283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding discrimination of MutS to a set of lesions and compound lesions (base damage and mismatch) reveals its potential role as a cisplatin-damaged DNA sensing protein.
    Fourrier L; Brooks P; Malinge JM
    J Biol Chem; 2003 Jun; 278(23):21267-75. PubMed ID: 12654906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.