These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 22901034)
1. The mitochondrial intermembrane space: a hub for oxidative folding linked to protein biogenesis. Chatzi A; Tokatlidis K Antioxid Redox Signal; 2013 Jul; 19(1):54-62. PubMed ID: 22901034 [TBL] [Abstract][Full Text] [Related]
2. The MIA pathway: a key regulator of mitochondrial oxidative protein folding and biogenesis. Mordas A; Tokatlidis K Acc Chem Res; 2015 Aug; 48(8):2191-9. PubMed ID: 26214018 [TBL] [Abstract][Full Text] [Related]
3. Oxidative protein folding in the mitochondrial intermembrane space. Sideris DP; Tokatlidis K Antioxid Redox Signal; 2010 Oct; 13(8):1189-204. PubMed ID: 20214493 [TBL] [Abstract][Full Text] [Related]
4. The Erv1-Mia40 disulfide relay system in the intermembrane space of mitochondria. Hell K Biochim Biophys Acta; 2008 Apr; 1783(4):601-9. PubMed ID: 18179776 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for the disulfide relay system in the mitochondrial intermembrane space. Endo T; Yamano K; Kawano S Antioxid Redox Signal; 2010 Nov; 13(9):1359-73. PubMed ID: 20136511 [TBL] [Abstract][Full Text] [Related]
6. Erv1 of Arabidopsis thaliana can directly oxidize mitochondrial intermembrane space proteins in the absence of redox-active Mia40. Peleh V; Zannini F; Backes S; Rouhier N; Herrmann JM BMC Biol; 2017 Nov; 15(1):106. PubMed ID: 29117860 [TBL] [Abstract][Full Text] [Related]
7. Trapping oxidative folding intermediates during translocation to the intermembrane space of mitochondria: in vivo and in vitro studies. Sideris DP; Tokatlidis K Methods Mol Biol; 2010; 619():411-23. PubMed ID: 20419425 [TBL] [Abstract][Full Text] [Related]
8. Targeting and maturation of Erv1/ALR in the mitochondrial intermembrane space. Kallergi E; Andreadaki M; Kritsiligkou P; Katrakili N; Pozidis C; Tokatlidis K; Banci L; Bertini I; Cefaro C; Ciofi-Baffoni S; Gajda K; Peruzzini R ACS Chem Biol; 2012 Apr; 7(4):707-14. PubMed ID: 22296668 [TBL] [Abstract][Full Text] [Related]
9. Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space. Sideris DP; Tokatlidis K Mol Microbiol; 2007 Sep; 65(5):1360-73. PubMed ID: 17680986 [TBL] [Abstract][Full Text] [Related]
10. The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria. Lionaki E; Aivaliotis M; Pozidis C; Tokatlidis K Antioxid Redox Signal; 2010 Nov; 13(9):1327-39. PubMed ID: 20367271 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional roles of the conserved cysteine residues of the redox-regulated import receptor Mia40 in the intermembrane space of mitochondria. Terziyska N; Grumbt B; Kozany C; Hell K J Biol Chem; 2009 Jan; 284(3):1353-63. PubMed ID: 19011240 [TBL] [Abstract][Full Text] [Related]
12. In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins. Böttinger L; Gornicka A; Czerwik T; Bragoszewski P; Loniewska-Lwowska A; Schulze-Specking A; Truscott KN; Guiard B; Milenkovic D; Chacinska A Mol Biol Cell; 2012 Oct; 23(20):3957-69. PubMed ID: 22918950 [TBL] [Abstract][Full Text] [Related]
13. Oxidative folding in the mitochondrial intermembrane space: A regulated process important for cell physiology and disease. Chatzi A; Manganas P; Tokatlidis K Biochim Biophys Acta; 2016 Jun; 1863(6 Pt A):1298-306. PubMed ID: 27033519 [TBL] [Abstract][Full Text] [Related]
14. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Mesecke N; Terziyska N; Kozany C; Baumann F; Neupert W; Hell K; Herrmann JM Cell; 2005 Jul; 121(7):1059-69. PubMed ID: 15989955 [TBL] [Abstract][Full Text] [Related]
15. Kinetic control by limiting glutaredoxin amounts enables thiol oxidation in the reducing mitochondrial intermembrane space. Kojer K; Peleh V; Calabrese G; Herrmann JM; Riemer J Mol Biol Cell; 2015 Jan; 26(2):195-204. PubMed ID: 25392302 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial disulfide bond formation is driven by intersubunit electron transfer in Erv1 and proofread by glutathione. Bien M; Longen S; Wagener N; Chwalla I; Herrmann JM; Riemer J Mol Cell; 2010 Feb; 37(4):516-28. PubMed ID: 20188670 [TBL] [Abstract][Full Text] [Related]
17. The essential mitochondrial protein Erv1 cooperates with Mia40 in biogenesis of intermembrane space proteins. Rissler M; Wiedemann N; Pfannschmidt S; Gabriel K; Guiard B; Pfanner N; Chacinska A J Mol Biol; 2005 Oct; 353(3):485-92. PubMed ID: 16181637 [TBL] [Abstract][Full Text] [Related]
18. Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c. Allen S; Balabanidou V; Sideris DP; Lisowsky T; Tokatlidis K J Mol Biol; 2005 Nov; 353(5):937-44. PubMed ID: 16185707 [TBL] [Abstract][Full Text] [Related]
19. Mitochondrial Ccs1 contains a structural disulfide bond crucial for the import of this unconventional substrate by the disulfide relay system. Gross DP; Burgard CA; Reddehase S; Leitch JM; Culotta VC; Hell K Mol Biol Cell; 2011 Oct; 22(20):3758-67. PubMed ID: 21865601 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Wrobel L; Trojanowska A; Sztolsztener ME; Chacinska A Mol Biol Cell; 2013 Mar; 24(5):543-54. PubMed ID: 23283984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]