These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 22901060)

  • 1. Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead.
    Denoncin K; Collet JF
    Antioxid Redox Signal; 2013 Jul; 19(1):63-71. PubMed ID: 22901060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA.
    Bushweller JH
    J Mol Biol; 2020 Aug; 432(18):5091-5103. PubMed ID: 32305461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutants in DsbB that appear to redirect oxidation through the disulfide isomerization pathway.
    Pan JL; Sliskovic I; Bardwell JC
    J Mol Biol; 2008 Apr; 377(5):1433-42. PubMed ID: 18325532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a sensor for disulfide bond formation in diverse bacteria.
    Dyotima ; Abulaila S; Mendoza J; Landeta C
    J Bacteriol; 2024 Apr; 206(4):e0043323. PubMed ID: 38493438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the disulfide bond formation of a cysteine-rich repeat protein from Helicobacter pylori in the periplasm of Escherichia coli.
    Devi VS; Mittl PR
    Curr Microbiol; 2011 Mar; 62(3):903-7. PubMed ID: 21046390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How proteins form disulfide bonds.
    Depuydt M; Messens J; Collet JF
    Antioxid Redox Signal; 2011 Jul; 15(1):49-66. PubMed ID: 20849374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa.
    Arts IS; Ball G; Leverrier P; Garvis S; Nicolaes V; Vertommen D; Ize B; Tamu Dufe V; Messens J; Voulhoux R; Collet JF
    mBio; 2013 Dec; 4(6):e00912-13. PubMed ID: 24327342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complementation of DsbA deficiency with secreted thioredoxin variants reveals the crucial role of an efficient dithiol oxidant for catalyzed protein folding in the bacterial periplasm.
    Jonda S; Huber-Wunderlich M; Glockshuber R; Mössner E
    EMBO J; 1999 Jun; 18(12):3271-81. PubMed ID: 10369668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways.
    Segatori L; Paukstelis PJ; Gilbert HF; Georgiou G
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10018-23. PubMed ID: 15220477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DsbA and DsbC-catalyzed oxidative folding of proteins with complex disulfide bridge patterns in vitro and in vivo.
    Maskos K; Huber-Wunderlich M; Glockshuber R
    J Mol Biol; 2003 Jan; 325(3):495-513. PubMed ID: 12498799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved role of the linker alpha-helix of the bacterial disulfide isomerase DsbC in the avoidance of misoxidation by DsbB.
    Segatori L; Murphy L; Arredondo S; Kadokura H; Gilbert H; Beckwith J; Georgiou G
    J Biol Chem; 2006 Feb; 281(8):4911-9. PubMed ID: 16280324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein disulfide bond generation in Escherichia coli DsbB-DsbA.
    Inaba K
    J Synchrotron Radiat; 2008 May; 15(Pt 3):199-201. PubMed ID: 18421137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli.
    Kurokawa Y; Yanagi H; Yura T
    Appl Environ Microbiol; 2000 Sep; 66(9):3960-5. PubMed ID: 10966415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein disulfide bond formation in prokaryotes.
    Kadokura H; Katzen F; Beckwith J
    Annu Rev Biochem; 2003; 72():111-35. PubMed ID: 12524212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disulfide bond formation system in Escherichia coli.
    Inaba K
    J Biochem; 2009 Nov; 146(5):591-7. PubMed ID: 19567379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of glutathione in periplasmic redox homeostasis and oxidative protein folding in Escherichia coli.
    Knoke LR; Zimmermann J; Lupilov N; Schneider JF; Celebi B; Morgan B; Leichert LI
    Redox Biol; 2023 Aug; 64():102800. PubMed ID: 37413765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of oxidative protein folding in the bacterial cell envelope.
    Kadokura H; Beckwith J
    Antioxid Redox Signal; 2010 Oct; 13(8):1231-46. PubMed ID: 20367276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topological plasticity of enzymes involved in disulfide bond formation allows catalysis in either the periplasm or the cytoplasm.
    Hatahet F; Ruddock LW
    J Mol Biol; 2013 Sep; 425(18):3268-76. PubMed ID: 23810903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo substrate specificity of periplasmic disulfide oxidoreductases.
    Hiniker A; Bardwell JC
    J Biol Chem; 2004 Mar; 279(13):12967-73. PubMed ID: 14726535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The atypical thiol-disulfide exchange protein α-DsbA2 from Wolbachia pipientis is a homotrimeric disulfide isomerase.
    Walden PM; Whitten AE; Premkumar L; Halili MA; Heras B; King GJ; Martin JL
    Acta Crystallogr D Struct Biol; 2019 Mar; 75(Pt 3):283-295. PubMed ID: 30950399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.