These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 22901070)

  • 1. Impact of heterogeneity on the dynamics of an SEIR epidemic model.
    Shuai Z; van den Driessche P
    Math Biosci Eng; 2012 Apr; 9(2):393-411. PubMed ID: 22901070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global stability for epidemic model with constant latency and infectious periods.
    Huang G; Beretta E; Takeuchi Y
    Math Biosci Eng; 2012 Apr; 9(2):297-312. PubMed ID: 22901066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global stability of an epidemic model with delay and general nonlinear incidence.
    McCluskey CC
    Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epidemic dynamics on semi-directed complex networks.
    Zhang X; Sun GQ; Zhu YX; Ma J; Jin Z
    Math Biosci; 2013 Dec; 246(2):242-51. PubMed ID: 24140877
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages.
    Wang X; Liu S
    Math Biosci Eng; 2012 Jul; 9(3):685-95. PubMed ID: 22881032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global dynamics of cholera models with differential infectivity.
    Shuai Z; van den Driessche P
    Math Biosci; 2011 Dec; 234(2):118-26. PubMed ID: 22001141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation.
    Xu J; Zhou Y
    Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global dynamics of an SEIR epidemic model with saturating contact rate.
    Zhang J; Ma Z
    Math Biosci; 2003 Sep; 185(1):15-32. PubMed ID: 12900140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of an SIQS epidemic model with transport-related infection and exit-entry screenings.
    Liu X; Chen X; Takeuchi Y
    J Theor Biol; 2011 Sep; 285(1):25-35. PubMed ID: 21740917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of group mixing on disease dynamics.
    van den Driessche P; Wang L; Zou X
    Math Biosci; 2010 Nov; 228(1):71-7. PubMed ID: 20801132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures.
    Kuniya T; Muroya Y; Enatsu Y
    Math Biosci Eng; 2014 Dec; 11(6):1375-93. PubMed ID: 25365599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and bifurcations in an epidemic model with varying immunity period.
    Blyuss KB; Kyrychko YN
    Bull Math Biol; 2010 Feb; 72(2):490-505. PubMed ID: 19898905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global stability analysis of a delayed susceptible-infected-susceptible epidemic model.
    Paulhus C; Wang XS
    J Biol Dyn; 2015; 9 Suppl 1():45-50. PubMed ID: 24978018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An SEIR epidemic model with constant latency time and infectious period.
    Beretta E; Breda D
    Math Biosci Eng; 2011 Oct; 8(4):931-52. PubMed ID: 21936593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epidemic models for complex networks with demographics.
    Jin Z; Sun G; Zhu H
    Math Biosci Eng; 2014 Dec; 11(6):1295-317. PubMed ID: 25365609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The global stability of an SIRS model with infection age.
    Chen Y; Yang J; Zhang F
    Math Biosci Eng; 2014 Jun; 11(3):449-69. PubMed ID: 24506548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse.
    Ren S
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1337-1360. PubMed ID: 29161864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global properties of infectious disease models with nonlinear incidence.
    Korobeinikov A
    Bull Math Biol; 2007 Aug; 69(6):1871-86. PubMed ID: 17443392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.