BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 22901074)

  • 1. In vivo and in vitro studies on the carotenoid cleavage oxygenases from Sphingopyxis alaskensis RB2256 and Plesiocystis pacifica SIR-1 revealed their substrate specificities and non-retinal-forming cleavage activities.
    Hoffmann J; Bóna-Lovász J; Beuttler H; Altenbuchner J
    FEBS J; 2012 Oct; 279(20):3911-24. PubMed ID: 22901074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids.
    Scherzinger D; Scheffer E; Bär C; Ernst H; Al-Babili S
    FEBS J; 2010 Nov; 277(22):4662-73. PubMed ID: 20929460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and biochemical characterization of a novel carotenoid oxygenase: elucidation of the cleavage step in the Fusarium carotenoid pathway.
    Prado-Cabrero A; Estrada AF; Al-Babili S; Avalos J
    Mol Microbiol; 2007 Apr; 64(2):448-60. PubMed ID: 17493127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acyclic carotenoid and cyclic apocarotenoid cleavage by an orthologue of lignostilbene-α,β-dioxygenase in Rhodopseudomonas palustris.
    Maeda I; Inaba A; Koike H; Yoneyama K; Ueda S; Yoshida K
    J Biochem; 2013 Nov; 154(5):449-54. PubMed ID: 23946507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an apo-carotenoid 13,14-dioxygenase from Novosphingobium aromaticivorans that converts β-apo-8'-carotenal to β-apo-13-carotenone.
    Kim YS; Seo ES; Oh DK
    Biotechnol Lett; 2012 Oct; 34(10):1851-6. PubMed ID: 22711425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena.
    Huang FC; Horváth G; Molnár P; Turcsi E; Deli J; Schrader J; Sandmann G; Schmidt H; Schwab W
    Phytochemistry; 2009 Mar; 70(4):457-64. PubMed ID: 19264332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cyanobacterial carotenoid ketolase CrtW and hydroxylase CrtR by complementation analysis in Escherichia coli.
    Makino T; Harada H; Ikenaga H; Matsuda S; Takaichi S; Shindo K; Sandmann G; Ogata T; Misawa N
    Plant Cell Physiol; 2008 Dec; 49(12):1867-78. PubMed ID: 18987067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro characterization of a carotenoid cleavage dioxygenase from Nostoc sp. PCC 7120 reveals a novel cleavage pattern, cytosolic localization and induction by highlight.
    Scherzinger D; Al-Babili S
    Mol Microbiol; 2008 Jul; 69(1):231-44. PubMed ID: 18485074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A carotenoid synthesis gene cluster from a non-marine Brevundimonas that synthesizes hydroxylated astaxanthin.
    Tao L; Rouvière PE; Cheng Q
    Gene; 2006 Sep; 379():101-8. PubMed ID: 16781830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of carotenoid isomerase activity in a prototypical carotenoid cleavage enzyme, apocarotenoid oxygenase (ACO).
    Sui X; Kiser PD; Che T; Carey PR; Golczak M; Shi W; von Lintig J; Palczewski K
    J Biol Chem; 2014 May; 289(18):12286-99. PubMed ID: 24648526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin.
    Steiger S; Sandmann G
    Biotechnol Lett; 2004 May; 26(10):813-7. PubMed ID: 15269553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage oxygenases for the biosynthesis of trisporoids and other apocarotenoids in Phycomyces.
    Medina HR; Cerdá-Olmedo E; Al-Babili S
    Mol Microbiol; 2011 Oct; 82(1):199-208. PubMed ID: 21854466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803.
    Ruch S; Beyer P; Ernst H; Al-Babili S
    Mol Microbiol; 2005 Feb; 55(4):1015-24. PubMed ID: 15686550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the rice carotenoid cleavage dioxygenase 1 reveals a novel route for geranial biosynthesis.
    Ilg A; Beyer P; Al-Babili S
    FEBS J; 2009 Feb; 276(3):736-47. PubMed ID: 19120446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutational and functional analysis of the beta-carotene ketolase involved in the production of canthaxanthin and astaxanthin.
    Ye RW; Stead KJ; Yao H; He H
    Appl Environ Microbiol; 2006 Sep; 72(9):5829-37. PubMed ID: 16957201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase.
    Daruwalla A; Zhang J; Lee HJ; Khadka N; Farquhar ER; Shi W; von Lintig J; Kiser PD
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19914-19925. PubMed ID: 32747548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carotenoid oxygenases: cleave it or leave it.
    Giuliano G; Al-Babili S; von Lintig J
    Trends Plant Sci; 2003 Apr; 8(4):145-9. PubMed ID: 12711223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NinaB combines carotenoid oxygenase and retinoid isomerase activity in a single polypeptide.
    Oberhauser V; Voolstra O; Bangert A; von Lintig J; Vogt K
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):19000-5. PubMed ID: 19020100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9',10'-monooxygenase.
    Mein JR; Dolnikowski GG; Ernst H; Russell RM; Wang XD
    Arch Biochem Biophys; 2011 Feb; 506(1):109-21. PubMed ID: 21081106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.
    Bruno M; Beyer P; Al-Babili S
    Arch Biochem Biophys; 2015 Apr; 572():126-133. PubMed ID: 25703194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.