These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22901089)

  • 1. Discovering patterns in drug-protein interactions based on their fingerprints.
    Luo W; Chan KC
    BMC Bioinformatics; 2012 Jun; 13 Suppl 9(Suppl 9):S4. PubMed ID: 22901089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global optimization-based inference of chemogenomic features from drug-target interactions.
    Zu S; Chen T; Li S
    Bioinformatics; 2015 Aug; 31(15):2523-9. PubMed ID: 25819672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracting sets of chemical substructures and protein domains governing drug-target interactions.
    Yamanishi Y; Pauwels E; Saigo H; Stoven V
    J Chem Inf Model; 2011 May; 51(5):1183-94. PubMed ID: 21506615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Systematic Prediction of Drug-Target Interactions Using Molecular Fingerprints and Protein Sequences.
    Huang YA; You ZH; Chen X
    Curr Protein Pept Sci; 2018; 19(5):468-478. PubMed ID: 27875970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering interesting molecular substructures for molecular classification.
    Lam WW; Chan KC
    IEEE Trans Nanobioscience; 2010 Jun; 9(2):77-89. PubMed ID: 20650702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.
    Wang L; You ZH; Chen X; Yan X; Liu G; Zhang W
    Curr Protein Pept Sci; 2018; 19(5):445-454. PubMed ID: 27842479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of chemogenomic features from drug-target interaction networks using interpretable classifiers.
    Tabei Y; Pauwels E; Stoven V; Takemoto K; Yamanishi Y
    Bioinformatics; 2012 Sep; 28(18):i487-i494. PubMed ID: 22962471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conserved core substructures in the overlay of protein-ligand complexes.
    Finzel BC; Akavaram R; Ragipindi A; Van Voorst JR; Cahn M; Davis ME; Pokross ME; Sheriff S; Baldwin ET
    J Chem Inf Model; 2011 Aug; 51(8):1931-41. PubMed ID: 21736376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhance the performance of current scoring functions with the aid of 3D protein-ligand interaction fingerprints.
    Liu J; Su M; Liu Z; Li J; Li Y; Wang R
    BMC Bioinformatics; 2017 Jul; 18(1):343. PubMed ID: 28720122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. KNIME-based Analysis of Off-Target Effect of Drugs Related to The Molecular 2D Fingerprint.
    Karimah N; Schaftenaar G
    J Pharm Pharm Sci; 2021; 24():256-266. PubMed ID: 34048670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fingerprinting Interactions between Proteins and Ligands for Facilitating Machine Learning in Drug Discovery.
    Li Z; Huang R; Xia M; Patterson TA; Hong H
    Biomolecules; 2024 Jan; 14(1):. PubMed ID: 38254672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions.
    Deng Z; Chuaqui C; Singh J
    J Med Chem; 2004 Jan; 47(2):337-44. PubMed ID: 14711306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug-likeness analysis of traditional Chinese medicines: prediction of drug-likeness using machine learning approaches.
    Tian S; Wang J; Li Y; Xu X; Hou T
    Mol Pharm; 2012 Oct; 9(10):2875-86. PubMed ID: 22738405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Prediction of Compound-protein Interaction on Compressed Molecular Fingerprints.
    Tabei Y
    Mol Inform; 2020 Jan; 39(1-2):e1900130. PubMed ID: 31908150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PreDTIs: prediction of drug-target interactions based on multiple feature information using gradient boosting framework with data balancing and feature selection techniques.
    Mahmud SMH; Chen W; Liu Y; Awal MA; Ahmed K; Rahman MH; Moni MA
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33709119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PASS Targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach.
    Pogodin PV; Lagunin AA; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2015; 26(10):783-93. PubMed ID: 26305108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Big data and artificial intelligence discover novel drugs targeting proteins without 3D structure and overcome the undruggable targets.
    He H; Liu B; Luo H; Zhang T; Jiang J
    Stroke Vasc Neurol; 2020 Dec; 5(4):381-387. PubMed ID: 33376199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.