These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22901089)

  • 21. Chemical substructures that enrich for biological activity.
    Klekota J; Roth FP
    Bioinformatics; 2008 Nov; 24(21):2518-25. PubMed ID: 18784118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. GES polypharmacology fingerprints: a novel approach for drug repositioning.
    Pérez-Nueno VI; Karaboga AS; Souchet M; Ritchie DW
    J Chem Inf Model; 2014 Mar; 54(3):720-34. PubMed ID: 24494653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Network-based characterization of drug-protein interaction signatures with a space-efficient approach.
    Tabei Y; Kotera M; Sawada R; Yamanishi Y
    BMC Syst Biol; 2019 Apr; 13(Suppl 2):39. PubMed ID: 30953486
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generalized modeling of enzyme-ligand interactions using proteochemometrics and local protein substructures.
    Strömbergsson H; Kryshtafovych A; Prusis P; Fidelis K; Wikberg JE; Komorowski J; Hvidsten TR
    Proteins; 2006 Nov; 65(3):568-79. PubMed ID: 16948162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Scaffold hopping using two-dimensional fingerprints: true potential, black magic, or a hopeless endeavor? Guidelines for virtual screening.
    Vogt M; Stumpfe D; Geppert H; Bajorath J
    J Med Chem; 2010 Aug; 53(15):5707-15. PubMed ID: 20684607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts.
    Li J; Zhu X; Chen JY
    PLoS Comput Biol; 2009 Jul; 5(7):e1000450. PubMed ID: 19649302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relating Substructures and Side Effects of Drugs with Chemical-chemical Interactions.
    Zhou B; Zhao X; Lu J; Sun Z; Liu M; Zhou Y; Liu R; Wang Y
    Comb Chem High Throughput Screen; 2020; 23(4):285-294. PubMed ID: 31267865
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting combinative drug pairs via multiple classifier system with positive samples only.
    Shi JY; Li JX; Mao KT; Cao JB; Lei P; Lu HM; Yiu SM
    Comput Methods Programs Biomed; 2019 Jan; 168():1-10. PubMed ID: 30527128
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drug-target interaction prediction from PSSM based evolutionary information.
    Mousavian Z; Khakabimamaghani S; Kavousi K; Masoudi-Nejad A
    J Pharmacol Toxicol Methods; 2016; 78():42-51. PubMed ID: 26592807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of R-Group Fingerprints Based on the Local Landscape from an Attachment Point of a Molecular Structure.
    Tamura S; Miyao T; Funatsu K
    J Chem Inf Model; 2019 Jun; 59(6):2656-2663. PubMed ID: 31059251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational methodologies for compound database searching that utilize experimental protein-ligand interaction information.
    Tan L; Batista J; Bajorath J
    Chem Biol Drug Des; 2010 Sep; 76(3):191-200. PubMed ID: 20636330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting target-ligand interactions using protein ligand-binding site and ligand substructures.
    Wang C; Liu J; Luo F; Deng Z; Hu QN
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S2. PubMed ID: 25707321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures.
    Cao DS; Liu S; Xu QS; Lu HM; Huang JH; Hu QN; Liang YZ
    Anal Chim Acta; 2012 Nov; 752():1-10. PubMed ID: 23101647
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the robustness of generalization of drug-drug interaction models.
    Kpanou R; Osseni MA; Tossou P; Laviolette F; Corbeil J
    BMC Bioinformatics; 2021 Oct; 22(1):477. PubMed ID: 34607569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DeepACTION: A deep learning-based method for predicting novel drug-target interactions.
    Hasan Mahmud SM; Chen W; Jahan H; Dai B; Din SU; Dzisoo AM
    Anal Biochem; 2020 Dec; 610():113978. PubMed ID: 33035462
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Domain-based small molecule binding site annotation.
    Snyder KA; Feldman HJ; Dumontier M; Salama JJ; Hogue CW
    BMC Bioinformatics; 2006 Mar; 7():152. PubMed ID: 16545112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Substructure mining using elaborate chemical representation.
    Kazius J; Nijssen S; Kok J; Bäck T; Ijzerman AP
    J Chem Inf Model; 2006; 46(2):597-605. PubMed ID: 16562988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences.
    Li Z; Han P; You ZH; Li X; Zhang Y; Yu H; Nie R; Chen X
    Sci Rep; 2017 Sep; 7(1):11174. PubMed ID: 28894115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drug-target interaction prediction via class imbalance-aware ensemble learning.
    Ezzat A; Wu M; Li XL; Kwoh CK
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):509. PubMed ID: 28155697
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.