These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 22901089)
41. Drug-target interaction prediction via class imbalance-aware ensemble learning. Ezzat A; Wu M; Li XL; Kwoh CK BMC Bioinformatics; 2016 Dec; 17(Suppl 19):509. PubMed ID: 28155697 [TBL] [Abstract][Full Text] [Related]
42. FLIP: An assisting software in structure based drug design using fingerprint of protein-ligand interaction profiles. Hajiebrahimi A; Ghasemi Y; Sakhteman A J Mol Graph Model; 2017 Nov; 78():234-244. PubMed ID: 29121561 [TBL] [Abstract][Full Text] [Related]
43. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines. González AJ; Liao L BMC Bioinformatics; 2010 Oct; 11():537. PubMed ID: 21034480 [TBL] [Abstract][Full Text] [Related]
44. Ligand-target prediction by structural network biology using nAnnoLyze. Martínez-Jiménez F; Marti-Renom MA PLoS Comput Biol; 2015 Mar; 11(3):e1004157. PubMed ID: 25816344 [TBL] [Abstract][Full Text] [Related]
45. [Prediction of drug-target interaction based on fingerprint similarity]. Yu YY; Liu YG; Jiang Y; Li LM Zhongguo Zhong Yao Za Zhi; 2017 Sep; 42(18):3578-3583. PubMed ID: 29218945 [TBL] [Abstract][Full Text] [Related]
46. Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks. Hu S; Zhang C; Chen P; Gu P; Zhang J; Wang B BMC Bioinformatics; 2019 Dec; 20(Suppl 25):689. PubMed ID: 31874614 [TBL] [Abstract][Full Text] [Related]
47. Supervised prediction of drug-target interactions using bipartite local models. Bleakley K; Yamanishi Y Bioinformatics; 2009 Sep; 25(18):2397-403. PubMed ID: 19605421 [TBL] [Abstract][Full Text] [Related]
48. Kernel-based data fusion improves the drug-protein interaction prediction. Wang YC; Zhang CH; Deng NY; Wang Y Comput Biol Chem; 2011 Dec; 35(6):353-62. PubMed ID: 22099632 [TBL] [Abstract][Full Text] [Related]
49. Prediction of drug-target interactions from multi-molecular network based on LINE network representation method. Ji BY; You ZH; Jiang HJ; Guo ZH; Zheng K J Transl Med; 2020 Sep; 18(1):347. PubMed ID: 32894154 [TBL] [Abstract][Full Text] [Related]
50. Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale. Li H; Li J; Wong L Bioinformatics; 2006 Apr; 22(8):989-96. PubMed ID: 16446278 [TBL] [Abstract][Full Text] [Related]
51. ChemoPy: freely available python package for computational biology and chemoinformatics. Cao DS; Xu QS; Hu QN; Liang YZ Bioinformatics; 2013 Apr; 29(8):1092-4. PubMed ID: 23493324 [TBL] [Abstract][Full Text] [Related]
52. Drug-domain interaction networks in myocardial infarction. Wang H; Zheng H; Azuaje F; Zhao XM IEEE Trans Nanobioscience; 2013 Sep; 12(3):182-8. PubMed ID: 23974657 [TBL] [Abstract][Full Text] [Related]
53. Chemical-protein interactome and its application in off-target identification. Yang L; Wang KJ; Wang LS; Jegga AG; Qin SY; He G; Chen J; Xiao Y; He L Interdiscip Sci; 2011 Mar; 3(1):22-30. PubMed ID: 21369884 [TBL] [Abstract][Full Text] [Related]
54. Computational drug repositioning based on the relationships between substructure-indication. Yang J; Zhang D; Liu L; Li G; Cai Y; Zhang Y; Jin H; Chen X Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313675 [TBL] [Abstract][Full Text] [Related]
55. Use of ligand based models for protein domains to predict novel molecular targets and applications to triage affinity chromatography data. Bender A; Mikhailov D; Glick M; Scheiber J; Davies JW; Cleaver S; Marshall S; Tallarico JA; Harrington E; Cornella-Taracido I; Jenkins JL J Proteome Res; 2009 May; 8(5):2575-85. PubMed ID: 19271732 [TBL] [Abstract][Full Text] [Related]
56. Utilizing target-ligand interaction information in fingerprint searching for ligands of related targets. Tan L; Bajorath J Chem Biol Drug Des; 2009 Jul; 74(1):25-32. PubMed ID: 19519741 [TBL] [Abstract][Full Text] [Related]
57. Predicting Drug-Induced Liver Injury Using Ensemble Learning Methods and Molecular Fingerprints. Ai H; Chen W; Zhang L; Huang L; Yin Z; Hu H; Zhao Q; Zhao J; Liu H Toxicol Sci; 2018 Sep; 165(1):100-107. PubMed ID: 29788510 [TBL] [Abstract][Full Text] [Related]
58. Robust ligand-based modeling of the biological targets of known drugs. Cleves AE; Jain AN J Med Chem; 2006 May; 49(10):2921-38. PubMed ID: 16686535 [TBL] [Abstract][Full Text] [Related]
59. Drug-Target Interaction Prediction Based on Drug Fingerprint Information and Protein Sequence. Li Y; Huang YA; You ZH; Li LP; Wang Z Molecules; 2019 Aug; 24(16):. PubMed ID: 31430892 [TBL] [Abstract][Full Text] [Related]
60. Chemical structural novelty: on-targets and off-targets. Yera ER; Cleves AE; Jain AN J Med Chem; 2011 Oct; 54(19):6771-85. PubMed ID: 21916467 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]