BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22901299)

  • 21. Improving performance of a tandem simulated moving bed process for sugar separation by making a difference in the adsorbents and the column lengths of the two subordinate simulated moving bed units.
    Mun S
    J Chromatogr A; 2013 Feb; 1277():48-57. PubMed ID: 23332306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fractionation of polyethylene glycol particles by simulated moving bed with size-exclusion chromatography.
    Liang MT; Liang RC
    J Chromatogr A; 2012 Mar; 1229():107-12. PubMed ID: 22293284
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of stereoisomers in a simulated moving bed-supercritical fluid chromatography plant.
    Depta A; Giese T; Johannsen M; Brunner G
    J Chromatogr A; 1999 Dec; 865(1-2):175-86. PubMed ID: 10674940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving performance of simulated moving bed chromatography by fractionation and feed-back of outlet streams.
    Kessler LC; Seidel-Morgenstern A
    J Chromatogr A; 2008 Oct; 1207(1-2):55-71. PubMed ID: 18768183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separation of D-psicose and D-fructose using simulated moving bed chromatography.
    Nguyen VD; Le TH; Kim JI; Lee JW; Koo YM
    J Sep Sci; 2009 Jun; 32(11):1987-95. PubMed ID: 19479773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-zone simulated moving bed for the separation of chlorogenic acid and caffeine fractions in the liquid extract of spent coffee grounds.
    Tangpromphan P; Palitsakun S; Jaree A
    Heliyon; 2023 Nov; 9(11):e21340. PubMed ID: 37964825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relay simulated moving bed chromatography: concept and design criteria.
    Silva RJ; Rodrigues RC; Mota JP
    J Chromatogr A; 2012 Oct; 1260():132-42. PubMed ID: 22980644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Separation of lactic acid from acetic acid using a four-zone SMB.
    Lee HJ; Xie Y; Koo YM; Wang NH
    Biotechnol Prog; 2004; 20(1):179-92. PubMed ID: 14763841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2011 Jun; 1218(25):3876-89. PubMed ID: 21596383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of phosphatidylcholine from soybean phospholipids by simulated moving bed.
    Lü YB; Yang YW; Wu PD
    J Zhejiang Univ Sci B; 2006 Jul; 7(7):559-64. PubMed ID: 16773730
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulated moving bed chromatography for the separation of enantiomers.
    Rajendran A; Paredes G; Mazzotti M
    J Chromatogr A; 2009 Jan; 1216(4):709-38. PubMed ID: 19004446
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Partial-discard strategy for obtaining high purity products using simulated moving bed chromatography.
    Bae YS; Lee CH
    J Chromatogr A; 2006 Jul; 1122(1-2):161-73. PubMed ID: 16690063
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimal design and experimental validation of a simulated moving bed chromatography for continuous recovery of formic acid in a model mixture of three organic acids from Actinobacillus bacteria fermentation.
    Park C; Nam HG; Lee KB; Mun S
    J Chromatogr A; 2014 Oct; 1365():106-14. PubMed ID: 25240652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Continuous recovery of valine in a model mixture of amino acids and salt from Corynebacterium bacteria fermentation using a simulated moving bed chromatography.
    Park C; Nam HG; Jo SH; Wang NH; Mun S
    J Chromatogr A; 2016 Feb; 1435():39-53. PubMed ID: 26830632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous modeling and optimization of nonlinear simulated moving bed chromatography by the prediction-correction method.
    Bentley J; Sloan C; Kawajiri Y
    J Chromatogr A; 2013 Mar; 1280():51-63. PubMed ID: 23380364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of the performances of a tandem simulated moving bed chromatography by controlling the yield level of a key product of the first simulated moving bed unit.
    Mun S; Wang NL
    J Chromatogr A; 2017 Mar; 1488():104-112. PubMed ID: 28057330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of simulated moving bed chromatography with fractionation and feedback: part II. Fractionation of both outlets.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5349-57. PubMed ID: 20619841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of simulated moving bed chromatography with fractionation and feedback: part I. Fractionation of one outlet.
    Li S; Kawajiri Y; Raisch J; Seidel-Morgenstern A
    J Chromatogr A; 2010 Aug; 1217(33):5337-48. PubMed ID: 20619840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing control of simulated moving beds--experimental implementation.
    Abel S; Erdem G; Amanullah M; Morari M; Mazzotti M; Morbidelli M
    J Chromatogr A; 2005 Oct; 1092(1):2-16. PubMed ID: 16188555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of Liquiritin by simulated moving bed chromatography.
    Cong J; Lin B
    J Chromatogr A; 2007 Mar; 1145(1-2):190-4. PubMed ID: 17289063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.