These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 22901299)

  • 41. Relationship between desorbent usage and the recovery of a target product in three-zone simulated moving bed processes designed under the conditions of positive and negative flow-rate-ratios of liquid to solid phases.
    Mun S
    J Chromatogr A; 2019 Oct; 1603():388-395. PubMed ID: 31196589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel pseudo simulated moving bed with solvent gradient for ternary separations.
    Wei F; Li M; Huang F; Chen M; Jiang H; Zhao Y
    J Chromatogr A; 2011 May; 1218(20):2906-11. PubMed ID: 21440256
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optimal operating mode for enantioseparation of SB-553261 racemate based on simulated moving bed technology.
    Wongso F; Hidajat K; Ray AK
    Biotechnol Bioeng; 2004 Sep; 87(6):704-22. PubMed ID: 15329929
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimal design and experimental validation of synchronous, asynchronous and flow-modulated, simulated moving-bed processes using a single-column setup.
    Rodrigues RC; Araújo JM; Mota JP
    J Chromatogr A; 2007 Aug; 1162(1):14-23. PubMed ID: 17306808
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Intermittent simulated moving bed chromatography: 3. Separation of Tröger's base enantiomers under nonlinear conditions.
    Katsuo S; Langel C; Sandré AL; Mazzotti M
    J Chromatogr A; 2011 Dec; 1218(52):9345-52. PubMed ID: 22119673
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluation of tertiary pyridine resin for the separation of lanthanides by simulated moving-bed chromatography.
    Sreedhar B; Suzuki T; Hobbs DT; Kawajiri Y
    J Sep Sci; 2014 Oct; 37(20):2892-9. PubMed ID: 25088396
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Step gradients in 3-zone simulated moving bed chromatography. Application to the purification of antibodies and bone morphogenetic protein-2.
    Kessler LC; Gueorguieva L; Rinas U; Seidel-Morgenstern A
    J Chromatogr A; 2007 Dec; 1176(1-2):69-78. PubMed ID: 18036537
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recombinant protein purification using gradient assisted simulated moving bed hydrophobic interaction chromatography. Part II: process design and experimental validation.
    Gueorguieva L; Palani S; Rinas U; Jayaraman G; Seidel-Morgenstern A
    J Chromatogr A; 2011 Sep; 1218(37):6402-11. PubMed ID: 21824621
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones.
    Santos da Silva FV; Seidel-Morgenstern A
    J Chromatogr A; 2016 Jul; 1456():123-36. PubMed ID: 27328885
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three-column intermittent simulated moving bed chromatography: 2. Experimental implementation for the separation of Tröger's Base.
    Jermann S; Alberti A; Mazzotti M
    J Chromatogr A; 2014 Oct; 1364():107-16. PubMed ID: 25239701
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of a malfunctional column on conventional and FeedCol-simulated moving bed chromatography performance.
    Song JY; Oh D; Lee CH
    J Chromatogr A; 2015 Jul; 1403():104-17. PubMed ID: 26037316
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal design of batch and simulated moving bed chromatographic separation processes.
    Jupke A; Epping A; Schmidt-Traub H
    J Chromatogr A; 2002 Jan; 944(1-2):93-117. PubMed ID: 11831767
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bi-level optimizing control of a simulated moving bed process with nonlinear adsorption isotherms.
    Kim K; Kim JI; Park H; Koo YM; Lee KS
    J Chromatogr A; 2011 Sep; 1218(38):6843-7. PubMed ID: 21855070
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of steady state recycling parameters utilizing polarimetry in chiral separations.
    Crawford ME; Stevens JM; Roenneburg L; Yanik G
    J Chromatogr A; 2008 Jan; 1178(1-2):56-9. PubMed ID: 18078947
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Systematic optimization and experimental validation of ternary simulated moving bed chromatography systems.
    Agrawal G; Sreedhar B; Kawajiri Y
    J Chromatogr A; 2014 Aug; 1356():82-95. PubMed ID: 24975780
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simulated moving bed separation of agarose-hydrolyzate components for biofuel production from marine biomass.
    Kim PH; Nam HG; Park C; Wang NH; Chang YK; Mun S
    J Chromatogr A; 2015 Aug; 1406():231-43. PubMed ID: 26141276
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Optimization of throughput and desorbent consumption in simulated moving-bed chromatography for paclitaxel purification.
    Wu DJ; Ma Z; Wang NH
    J Chromatogr A; 1999 Sep; 855(1):71-89. PubMed ID: 10514974
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Theoretical study of multicomponent continuous countercurrent chromatography based on connected 4-zone units.
    Kessler LC; Seidel-Morgenstern A
    J Chromatogr A; 2006 Sep; 1126(1-2):323-37. PubMed ID: 16759666
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enhanced performance of a three-zone simulated moving bed chromatography for separation of succinic acid and lactic acid by simultaneous use of port-location rearrangement and partial-feeding.
    Mun S
    J Chromatogr A; 2014 Jul; 1350():72-82. PubMed ID: 24881495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Two-column simulated moving-bed process for binary separation.
    Rodrigues RC; Canhoto TJ; Araújo JM; Mota JP
    J Chromatogr A; 2008 Feb; 1180(1-2):42-52. PubMed ID: 18154982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.