These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 22901854)

  • 1. Controlling horizontal deceleration during gait termination in transfemoral amputees: measurements and simulations.
    van Keeken HG; Vrieling AH; Hof AL; Postema K; Otten B
    Med Eng Phys; 2013 May; 35(5):583-90. PubMed ID: 22901854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling propulsive forces in gait initiation in transfemoral amputees.
    van Keeken HG; Vrieling AH; Hof AL; Halbertsma JP; Schoppen T; Postema K; Otten B
    J Biomech Eng; 2008 Feb; 130(1):011002. PubMed ID: 18298178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait termination in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Jan; 27(1):82-90. PubMed ID: 17376689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task.
    Segal AD; Orendurff MS; Czerniecki JM; Schoen J; Klute GK
    Gait Posture; 2011 Jan; 33(1):41-7. PubMed ID: 20974535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Obstacle crossing in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2007 Oct; 26(4):587-94. PubMed ID: 17275306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait adjustments in obstacle crossing, gait initiation and gait termination after a recent lower limb amputation.
    Vrieling AH; van Keeken HG; Schoppen T; Hof AL; Otten B; Halbertsma JP; Postema K
    Clin Rehabil; 2009 Jul; 23(7):659-71. PubMed ID: 19470553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relative contributions of the prosthetic and sound limb to balance control in unilateral transtibial amputees.
    Curtze C; Hof AL; Postema K; Otten B
    Gait Posture; 2012 Jun; 36(2):276-81. PubMed ID: 22525420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.
    Silver-Thorn B; Current T; Kuhse B
    Prosthet Orthot Int; 2012 Dec; 36(4):435-42. PubMed ID: 22581661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methodology for studying the effects of various types of prosthetic feet on the biomechanics of trans-femoral amputee gait.
    van der Linden ML; Solomonidis SE; Spence WD; Li N; Paul JP
    J Biomech; 1999 Sep; 32(9):877-89. PubMed ID: 10460124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gait initiation in lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Apr; 27(3):423-30. PubMed ID: 17624782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM; Scally AJ; Buckley JG
    Clin Biomech (Bristol, Avon); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic input to determine hip joint moments, power and work on the prosthetic limb of transfemoral amputees: ground reaction vs knee reaction.
    Frossard L; Cheze L; Dumas R
    Prosthet Orthot Int; 2011 Jun; 35(2):140-9. PubMed ID: 21697197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower-limb proprioception in above-knee amputees.
    Eakin CL; Quesada PM; Skinner H
    Clin Orthop Relat Res; 1992 Nov; (284):239-46. PubMed ID: 1395300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic elastic response prostheses alter approach angles and ground reaction forces but not leg stiffness during a start-stop task.
    Haber CK; Ritchie LJ; Strike SC
    Hum Mov Sci; 2018 Apr; 58():337-346. PubMed ID: 29269103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swing phase control with knee friction in juvenile amputees.
    Hicks R; Tashman S; Cary JM; Altman RF; Gage JR
    J Orthop Res; 1985; 3(2):198-201. PubMed ID: 3998896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of prosthetic mass distribution on the spatiotemporal characteristics and knee kinematics of transfemoral amputee locomotion.
    Hekmatfard M; Farahmand F; Ebrahimi I
    Gait Posture; 2013 Jan; 37(1):78-81. PubMed ID: 22832472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.