These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 22902142)

  • 1. Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite nanoparticles.
    Chowdhury SR; Yanful EK; Pratt AR
    J Hazard Mater; 2012 Oct; 235-236():246-56. PubMed ID: 22902142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of cadmium(II) uptake by mixed maghemite-magnetite nanoparticles.
    Chowdhury SR; Yanful EK
    J Environ Manage; 2013 Nov; 129():642-51. PubMed ID: 24041626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal.
    Chowdhury SR; Yanful EK
    J Environ Manage; 2010 Nov; 91(11):2238-47. PubMed ID: 20598797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles.
    Hu J; Chen G; Lo IM
    Water Res; 2005 Nov; 39(18):4528-36. PubMed ID: 16146639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions.
    Yuan P; Fan M; Yang D; He H; Liu D; Yuan A; Zhu J; Chen T
    J Hazard Mater; 2009 Jul; 166(2-3):821-9. PubMed ID: 19135796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles.
    Yuan P; Liu D; Fan M; Yang D; Zhu R; Ge F; Zhu J; He H
    J Hazard Mater; 2010 Jan; 173(1-3):614-21. PubMed ID: 19748178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient detoxification of Cr(VI) by chitosan-Fe(III) complex: process and mechanism studies.
    Shen C; Chen H; Wu S; Wen Y; Li L; Jiang Z; Li M; Liu W
    J Hazard Mater; 2013 Jan; 244-245():689-97. PubMed ID: 23200119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of trivalent and hexavalent chromium with aminated polyacrylonitrile fibers: performance and mechanisms.
    Deng S; Bai R
    Water Res; 2004 May; 38(9):2423-31. PubMed ID: 15142804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of hexavalent chromium from acidic aqueous solutions using rice straw-derived carbon.
    Hsu NH; Wang SL; Liao YH; Huang ST; Tzou YM; Huang YM
    J Hazard Mater; 2009 Nov; 171(1-3):1066-70. PubMed ID: 19619940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide.
    Shan C; Tong M
    Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of Cr(VI) onto functionalized pyridine copolymer with amide groups.
    Neagu V
    J Hazard Mater; 2009 Nov; 171(1-3):410-6. PubMed ID: 19647364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr(VI) from aqueous solutions.
    Demirbas E; Kobya M; Konukman AE
    J Hazard Mater; 2008 Jun; 154(1-3):787-94. PubMed ID: 18068295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced adsorption of chromium onto activated carbon by microwave-assisted H(3)PO(4) mixed with Fe/Al/Mn activation.
    Sun Y; Yue Q; Mao Y; Gao B; Gao Y; Huang L
    J Hazard Mater; 2014 Jan; 265():191-200. PubMed ID: 24361798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles.
    Geng B; Jin Z; Li T; Qi X
    Chemosphere; 2009 May; 75(6):825-30. PubMed ID: 19217139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of physicochemical factors on Cr(VI) removal from leachate by zero-valent iron and alpha-Fe(2)O(3) nanoparticles.
    Liu TY; Zhao L; Tan X; Liu SJ; Li JJ; Qi Y; Mao GZ
    Water Sci Technol; 2010; 61(11):2759-67. PubMed ID: 20489248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of chromium by riverbed sand from water and wastewater: effect of important parameters.
    Sharma YC; Singh B; Agrawal A; Weng CH
    J Hazard Mater; 2008 Mar; 151(2-3):789-93. PubMed ID: 17656013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromium removal from electroplating wastewater by coir pith.
    Suksabye P; Thiravetyan P; Nakbanpote W; Chayabutra S
    J Hazard Mater; 2007 Mar; 141(3):637-44. PubMed ID: 16919872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.