These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 22902389)
1. The surface layer of pharmaceutical compacts: the role of the punch surface and its impact on the mechanical properties of the compacts. Mazel V; Busignies V; Diarra H; Reiche I; Tchoreloff P Int J Pharm; 2013 Feb; 442(1-2):42-8. PubMed ID: 22902389 [TBL] [Abstract][Full Text] [Related]
2. Anisotropic porous structure of pharmaceutical compacts evaluated by PGSTE-NMR in relation to mechanical property anisotropy. Porion P; Busignies V; Mazel V; Leclerc B; Evesque P; Tchoreloff P Pharm Res; 2010 Oct; 27(10):2221-33. PubMed ID: 20697782 [TBL] [Abstract][Full Text] [Related]
3. Investigation and modelling approach of the mechanical properties of compacts made with binary mixtures of pharmaceutical excipients. Busignies V; Leclerc B; Porion P; Evesque P; Couarraze G; Tchoreloff P Eur J Pharm Biopharm; 2006 Aug; 64(1):51-65. PubMed ID: 16750353 [TBL] [Abstract][Full Text] [Related]
4. Comparative evaluation of powder and tableting properties of low and high degree of polymerization cellulose I and cellulose II excipients. de la Luz Reus Medina M; Kumar V Int J Pharm; 2007 Jun; 337(1-2):202-9. PubMed ID: 17376616 [TBL] [Abstract][Full Text] [Related]
5. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength. He X; Secreast PJ; Amidon GE J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360 [TBL] [Abstract][Full Text] [Related]
6. Mechanical property anisotropy of pharmaceutical excipient compacts. Mullarney MP; Hancock BC Int J Pharm; 2006 May; 314(1):9-14. PubMed ID: 16621371 [TBL] [Abstract][Full Text] [Related]
7. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Edge S; Steele DF; Chen A; Tobyn MJ; Staniforth JN Int J Pharm; 2000 Apr; 200(1):67-72. PubMed ID: 10845687 [TBL] [Abstract][Full Text] [Related]
9. Effect of particle size on compaction of materials with different deformation mechanisms with and without lubricants. Almaya A; Aburub A AAPS PharmSciTech; 2008; 9(2):414-8. PubMed ID: 18431664 [TBL] [Abstract][Full Text] [Related]
10. Directional bonding in compacted microcrystalline cellulose. Edge S; Steele DF; Tobyn MJ; Staniforth JN; Chen A Drug Dev Ind Pharm; 2001 Aug; 27(7):613-21. PubMed ID: 11694008 [TBL] [Abstract][Full Text] [Related]
11. Investigating the effect of punch geometry on high speed tableting through radial die-wall pressure monitoring. Abdel-Hamid S; Betz G Pharm Dev Technol; 2013 Feb; 18(1):46-54. PubMed ID: 21810067 [TBL] [Abstract][Full Text] [Related]
12. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
13. Measurements of elastic moduli of pharmaceutical compacts: a new methodology using double compaction on a compaction simulator. Mazel V; Busignies V; Diarra H; Tchoreloff P J Pharm Sci; 2012 Jun; 101(6):2220-8. PubMed ID: 22430162 [TBL] [Abstract][Full Text] [Related]
14. Correlation between compactibility values and excipient cluster size using an in silico approach. Martínez L; Betz G; Villalobos R; Melgoza L; Young PM Drug Dev Ind Pharm; 2013 Feb; 39(2):374-81. PubMed ID: 22568747 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of roll compaction of free-flowing and cohesive pharmaceutical powders. Yu S; Gururajan B; Reynolds G; Roberts R; Adams MJ; Wu CY Int J Pharm; 2012 May; 428(1-2):39-47. PubMed ID: 22402475 [TBL] [Abstract][Full Text] [Related]
16. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method. Diarra H; Mazel V; Busignies V; Tchoreloff P Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746 [TBL] [Abstract][Full Text] [Related]
17. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending. Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448 [TBL] [Abstract][Full Text] [Related]
18. Nondestructive measurements of the compact strength and the particle-size distribution after milling of roller compacted powders by near-infrared spectroscopy. Gupta A; Peck GE; Miller RW; Morris KR J Pharm Sci; 2004 Apr; 93(4):1047-53. PubMed ID: 14999740 [TBL] [Abstract][Full Text] [Related]
19. Structural heterogeneity of pharmaceutical compacts probed by micro-indentation. Lee J J Mater Sci Mater Med; 2008 May; 19(5):1981-90. PubMed ID: 17943416 [TBL] [Abstract][Full Text] [Related]
20. A novel tool for the prediction of tablet sticking during high speed compaction. Abdel-Hamid S; Betz G Pharm Dev Technol; 2012; 17(6):747-54. PubMed ID: 21563986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]