These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22902591)
1. Cell-mediated delivery of glucocorticoids from thiol-ene hydrogels. Yang C; Mariner PD; Nahreini JN; Anseth KS J Control Release; 2012 Sep; 162(3):612-8. PubMed ID: 22902591 [TBL] [Abstract][Full Text] [Related]
2. The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Anderson SB; Lin CC; Kuntzler DV; Anseth KS Biomaterials; 2011 May; 32(14):3564-74. PubMed ID: 21334063 [TBL] [Abstract][Full Text] [Related]
3. Interplay between degradability and integrin signaling on mesenchymal stem cell function within poly(ethylene glycol) based microporous annealed particle hydrogels. Xin S; Gregory CA; Alge DL Acta Biomater; 2020 Jan; 101():227-236. PubMed ID: 31711899 [TBL] [Abstract][Full Text] [Related]
4. Cell-mediated degradation regulates human mesenchymal stem cell chondrogenesis and hypertrophy in MMP-sensitive hyaluronic acid hydrogels. Feng Q; Zhu M; Wei K; Bian L PLoS One; 2014; 9(6):e99587. PubMed ID: 24911871 [TBL] [Abstract][Full Text] [Related]
5. Visible light cured thiol-vinyl hydrogels with tunable degradation for 3D cell culture. Hao Y; Shih H; Muňoz Z; Kemp A; Lin CC Acta Biomater; 2014 Jan; 10(1):104-14. PubMed ID: 24021231 [TBL] [Abstract][Full Text] [Related]
6. GFOGER-modified MMP-sensitive polyethylene glycol hydrogels induce chondrogenic differentiation of human mesenchymal stem cells. Mhanna R; Öztürk E; Vallmajo-Martin Q; Millan C; Müller M; Zenobi-Wong M Tissue Eng Part A; 2014 Apr; 20(7-8):1165-74. PubMed ID: 24134736 [TBL] [Abstract][Full Text] [Related]
7. Amphiphilic beads as depots for sustained drug release integrated into fibrillar scaffolds. Gaharwar AK; Mihaila SM; Kulkarni AA; Patel A; Di Luca A; Reis RL; Gomes ME; van Blitterswijk C; Moroni L; Khademhosseini A J Control Release; 2014 Aug; 187():66-73. PubMed ID: 24794894 [TBL] [Abstract][Full Text] [Related]
8. Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. Nuttelman CR; Tripodi MC; Anseth KS J Biomed Mater Res A; 2006 Jan; 76(1):183-95. PubMed ID: 16265650 [TBL] [Abstract][Full Text] [Related]
9. The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Salinas CN; Anseth KS Biomaterials; 2008 May; 29(15):2370-7. PubMed ID: 18295878 [TBL] [Abstract][Full Text] [Related]
10. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Leight JL; Alge DL; Maier AJ; Anseth KS Biomaterials; 2013 Oct; 34(30):7344-52. PubMed ID: 23830581 [TBL] [Abstract][Full Text] [Related]
11. A comparison of human mesenchymal stem cell osteogenesis in poly(ethylene glycol) hydrogels as a function of MMP-sensitive crosslinker and crosslink density in chemically defined medium. Aziz AH; Bryant SJ Biotechnol Bioeng; 2019 Jun; 116(6):1523-1536. PubMed ID: 30776309 [TBL] [Abstract][Full Text] [Related]
12. Cross-linking and degradation of step-growth hydrogels formed by thiol-ene photoclick chemistry. Shih H; Lin CC Biomacromolecules; 2012 Jul; 13(7):2003-12. PubMed ID: 22708824 [TBL] [Abstract][Full Text] [Related]
13. Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cell. Sittichokechaiwut A; Edwards JH; Scutt AM; Reilly GC Eur Cell Mater; 2010 Jul; 20():45-57. PubMed ID: 20648425 [TBL] [Abstract][Full Text] [Related]
14. PEG hydrogels formed by thiol-ene photo-click chemistry and their effect on the formation and recovery of insulin-secreting cell spheroids. Lin CC; Raza A; Shih H Biomaterials; 2011 Dec; 32(36):9685-95. PubMed ID: 21924490 [TBL] [Abstract][Full Text] [Related]
15. An in vitro and in vivo comparison of cartilage growth in chondrocyte-laden matrix metalloproteinase-sensitive poly(ethylene glycol) hydrogels with localized transforming growth factor β3. Schneider MC; Chu S; Randolph MA; Bryant SJ Acta Biomater; 2019 Jul; 93():97-110. PubMed ID: 30914256 [TBL] [Abstract][Full Text] [Related]
16. Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness. Daviran M; Catalano J; Schultz KM Biomacromolecules; 2020 Aug; 21(8):3056-3068. PubMed ID: 32559386 [TBL] [Abstract][Full Text] [Related]
17. Light-mediated Formation and Patterning of Hydrogels for Cell Culture Applications. Sawicki LA; Kloxin AM J Vis Exp; 2016 Sep; (115):. PubMed ID: 27768057 [TBL] [Abstract][Full Text] [Related]
18. The effects of intermittent dynamic loading on chondrogenic and osteogenic differentiation of human marrow stromal cells encapsulated in RGD-modified poly(ethylene glycol) hydrogels. Steinmetz NJ; Bryant SJ Acta Biomater; 2011 Nov; 7(11):3829-40. PubMed ID: 21742067 [TBL] [Abstract][Full Text] [Related]
19. Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. Aimetti AA; Machen AJ; Anseth KS Biomaterials; 2009 Oct; 30(30):6048-54. PubMed ID: 19674784 [TBL] [Abstract][Full Text] [Related]
20. DNA delivery from matrix metalloproteinase degradable poly(ethylene glycol) hydrogels to mouse cloned mesenchymal stem cells. Lei Y; Segura T Biomaterials; 2009 Jan; 30(2):254-65. PubMed ID: 18838159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]