These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22902892)

  • 1. An infrared spectroscopic comparison of four Chinese palygorskites.
    Liu Q; Yao X; Cheng H; Frost RL
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():784-9. PubMed ID: 22902892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared transmission and emission spectroscopic study of selected Chinese palygorskites.
    Cheng H; Yang J; Frost RL; Wu Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 83(1):518-24. PubMed ID: 21958517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Fourier transform infrared spectroscopic study of Mg-rich, Mg-poor and acid leached palygorskites.
    Cai Y; Xue J; Polya DA
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Feb; 66(2):282-8. PubMed ID: 16824788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FTIR spectroscopy study of the structure changes of palygorskite under heating.
    Yan W; Liu D; Tan D; Yuan P; Chen M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1052-7. PubMed ID: 22925981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Spectra study on the influence of drying process on palygorskite structure].
    Huang JH; Liu YF; Jin QZ; Wang XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):408-10. PubMed ID: 17514988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of terpenic compounds onto organo-palygorskite.
    Ghrab S; Eloussaief M; Lambert S; Bouaziz S; Benzina M
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18251-18262. PubMed ID: 28500552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite.
    Chen H; Zhao Y; Wang A
    J Hazard Mater; 2007 Oct; 149(2):346-54. PubMed ID: 17493750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of isoniazid onto sepiolite-palygorskite group of clays: An IR study.
    Akyuz S; Akyuz T; Akalin E
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Apr; 75(4):1304-7. PubMed ID: 20133184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of p-nitrophenol by anion-cation modified palygorskite.
    Chang Y; Lv X; Zha F; Wang Y; Lei Z
    J Hazard Mater; 2009 Sep; 168(2-3):826-31. PubMed ID: 19304381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of rehydration on structure and surface properties of thermally treated palygorskite.
    Liu H; Chen T; Chang D; Qing C; Kong D; Chen D; Xie J; Frost RL
    J Colloid Interface Sci; 2013 Mar; 393():87-91. PubMed ID: 23245888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interface interaction behavior between E. coli and two kinds of fibrous minerals.
    Dai Q; Han L; Deng J; Zhao Y; Dang Z; Tan D; Dong F
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22420-22428. PubMed ID: 29119494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.
    Zhang X; Cheng L; Wu X; Tang Y; Wu Y
    J Environ Sci (China); 2015 Jul; 33():97-105. PubMed ID: 26141882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sorptive removal of tetracycline from water by palygorskite.
    Chang PH; Li Z; Yu TL; Munkhbayer S; Kuo TH; Hung YC; Jean JS; Lin KH
    J Hazard Mater; 2009 Jun; 165(1-3):148-55. PubMed ID: 19008045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of phosphate from aqueous solution by thermally treated natural palygorskite.
    Gan F; Zhou J; Wang H; Du C; Chen X
    Water Res; 2009 Jun; 43(11):2907-15. PubMed ID: 19447464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite.
    Cheng H; Frost RL; Yang J; Liu Q; He J
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1014-20. PubMed ID: 20864389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water.
    Stathatos E; Papoulis D; Aggelopoulos CA; Panagiotaras D; Nikolopoulou A
    J Hazard Mater; 2012 Apr; 211-212():68-76. PubMed ID: 22177018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman and infrared spectroscopic study of the anhydrous carbonate minerals shortite and barytocalcite.
    Frost RL; Dickfos MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):143-6. PubMed ID: 18222105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of sulphur dioxide using palygorskite in a fixed bed adsorber.
    Zhang Q; Higuchi T; Sekine M; Imai T
    Environ Technol; 2009 Dec; 30(14):1529-38. PubMed ID: 20183997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of hydrogen sulfide using palygorskite in a fixed bed adsorber.
    Higuchi T; Zhang Q; Sekine M; Imai T; Yamamoto K
    Water Sci Technol; 2012; 66(8):1794-8. PubMed ID: 22907467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible light induced CO2 reduction and Rh B decolorization over electrostatic-assembled AgBr/palygorskite.
    Zhang X; Li J; Lu X; Tang C; Lu G
    J Colloid Interface Sci; 2012 Jul; 377(1):277-83. PubMed ID: 22487233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.