BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22903003)

  • 1. A risk-based approach to prioritise catchments for diffuse metal pollution management.
    Chon HS; Ohandja DG; Voulvoulis N
    Sci Total Environ; 2012 Oct; 437():42-52. PubMed ID: 22903003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal and spatial variation of diffuse (non-point) source zinc pollution in a historically metal mined river catchment, UK.
    Gozzard E; Mayes WM; Potter HA; Jarvis AP
    Environ Pollut; 2011 Oct; 159(10):3113-22. PubMed ID: 21561697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C; Jarvie HP; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 Jul; 365(1-3):15-32. PubMed ID: 16618496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. River pollution from non-point sources: a new simplified method of assessment.
    Munafò M; Cecchi G; Baiocco F; Mancini L
    J Environ Manage; 2005 Oct; 77(2):93-8. PubMed ID: 15990217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches to the implementation of the Water Framework Directive: targeting mitigation measures at critical source areas of diffuse phosphorus in Irish catchments.
    Doody DG; Archbold M; Foy RH; Flynn R
    J Environ Manage; 2012 Jan; 93(1):225-34. PubMed ID: 22054589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of sediments as a source of metals in river catchments.
    Chon HS; Ohandja DG; Voulvoulis N
    Chemosphere; 2012 Aug; 88(10):1250-6. PubMed ID: 22546630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthophosphate-P in the nutrient impacted River Taw and its catchment (SW England) between 1990 and 2013.
    Tappin AD; Comber S; Worsfold PJ
    Environ Sci Process Impacts; 2016 Jun; 18(6):690-705. PubMed ID: 27152942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. River water quality of the River Cherwell: an agricultural clay-dominated catchment in the upper Thames Basin, southeastern England.
    Neal C; Neal M; Hill L; Wickham H
    Sci Total Environ; 2006 May; 360(1-3):272-89. PubMed ID: 16253306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Levels, sources and spatiotemporal variation of nutrients and micropollutants in small streams of a Mediterranean River basin.
    Karaouzas I; Lambropoulou DA; Skoulikidis NT; Albanis TA
    J Environ Monit; 2011 Nov; 13(11):3064-74. PubMed ID: 21918757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting phosphorus concentrations in British rivers resulting from the introduction of improved phosphorus removal from sewage effluent.
    Bowes MJ; Neal C; Jarvie HP; Smith JT; Davies HN
    Sci Total Environ; 2010 Sep; 408(19):4239-50. PubMed ID: 20547413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ensemble modelling of nutrient loads and nutrient load partitioning in 17 European catchments.
    Kronvang B; Behrendt H; Andersen HE; Arheimer B; Barr A; Borgvang SA; Bouraoui F; Granlund K; Grizzetti B; Groenendijk P; Schwaiger E; Hejzlar J; Hoffmann L; Johnsson H; Panagopoulos Y; Lo Porto A; Reisser H; Schoumans O; Anthony S; Silgram M; Venohr M; Larsen SE
    J Environ Monit; 2009 Mar; 11(3):572-83. PubMed ID: 19280035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracing suspended sediment sources in catchments and river systems.
    Walling DE
    Sci Total Environ; 2005 May; 344(1-3):159-84. PubMed ID: 15907516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrochemical evaluation of surface water quality and pollution source apportionment in the Luan River basin, China.
    Wang H; Li X; Xie Y
    Water Sci Technol; 2011; 64(10):2119-25. PubMed ID: 22105137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of diffuse pollution model applications in EUROHARP catchments with limited data.
    Silgram M; Anthony SG; Collins AL; Stromqvist J; Bouraoui F; Schoumans O; Lo Porto A; Groenendijk P; Arheimer B; Mimikou M; Johnsson H
    J Environ Monit; 2009 Mar; 11(3):554-71. PubMed ID: 19280034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing Land-Sea Conservation Planning: Integrating Modelling of Catchments, Land-Use Change, and River Plumes to Prioritise Catchment Management and Protection.
    Álvarez-Romero JG; Pressey RL; Ban NC; Brodie J
    PLoS One; 2015; 10(12):e0145574. PubMed ID: 26714166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spatiotemporal variation analysis and identification of water pollution sources in the Zhangweinan River basin].
    Xu HS; Xu ZX; Tang FF; Yu WD; Cheng YP
    Huan Jing Ke Xue; 2012 Feb; 33(2):359-69. PubMed ID: 22509568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin.
    Mirauda D; Ostoich M
    Int J Environ Res Public Health; 2018 Feb; 15(2):. PubMed ID: 29473909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting microbial pollution concentrations in UK rivers in response to land use change.
    Hampson D; Crowther J; Bateman I; Kay D; Posen P; Stapleton C; Wyer M; Fezzi C; Jones P; Tzanopoulos J
    Water Res; 2010 Sep; 44(16):4748-59. PubMed ID: 20708770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of metal source uncertainty on cost-effective allocation of mine water pollution abatement in catchments.
    Baresel C; Destouni G; Gren IM
    J Environ Manage; 2006 Jan; 78(2):138-48. PubMed ID: 16095805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling of phosphorus inputs to rivers from diffuse and point sources.
    Bowes MJ; Smith JT; Jarvie HP; Neal C
    Sci Total Environ; 2008 Jun; 395(2-3):125-38. PubMed ID: 18367235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.