These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 22903057)
1. Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium-ion batteries. Liu Y; Tan L; Li L Chem Commun (Camb); 2012 Oct; 48(79):9858-60. PubMed ID: 22903057 [TBL] [Abstract][Full Text] [Related]
2. Interfacial characteristics of a PEGylated imidazolium bistriflamide ionic liquid electrolyte at a lithium ion battery cathode of LiMn2O4. Rock SE; Wu L; Crain DJ; Krishnan S; Roy D ACS Appl Mater Interfaces; 2013 Mar; 5(6):2075-84. PubMed ID: 23432452 [TBL] [Abstract][Full Text] [Related]
3. Enhancing the high rate capability and cycling stability of LiMn₂O₄ by coating of solid-state electrolyte LiNbO₃. Zhang ZJ; Chou SL; Gu QF; Liu HK; Li HJ; Ozawa K; Wang JZ ACS Appl Mater Interfaces; 2014 Dec; 6(24):22155-65. PubMed ID: 25469550 [TBL] [Abstract][Full Text] [Related]
4. Rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. Hu P; Duan Y; Hu D; Qin B; Zhang J; Wang Q; Liu Z; Cui G; Chen L ACS Appl Mater Interfaces; 2015 Mar; 7(8):4720-7. PubMed ID: 25654192 [TBL] [Abstract][Full Text] [Related]
5. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode. Zhu Z; Hong M; Guo D; Shi J; Tao Z; Chen J J Am Chem Soc; 2014 Nov; 136(47):16461-4. PubMed ID: 25383544 [TBL] [Abstract][Full Text] [Related]
6. Building an artificial solid electrolyte interphase on spinel lithium manganate for high performance aqueous lithium-ion batteries. Dong W; Huang X; Jin Y; Xie M; Zhao W; Huang F Dalton Trans; 2020 Jun; 49(24):8136-8142. PubMed ID: 32496490 [TBL] [Abstract][Full Text] [Related]
7. Facile Synthesis of Nanosized Lithium-Ion-Conducting Solid Electrolyte Li Liu X; Tan J; Fu J; Yuan R; Wen H; Zhang C ACS Appl Mater Interfaces; 2017 Apr; 9(13):11696-11703. PubMed ID: 28256132 [TBL] [Abstract][Full Text] [Related]
8. Hollow LiMn(2)O(4) nanocones as superior cathode materials for lithium-ion batteries with enhanced power and cycle performances. Jiang H; Fu Y; Hu Y; Yan C; Zhang L; Lee PS; Li C Small; 2014 Mar; 10(6):1096-100. PubMed ID: 24532322 [TBL] [Abstract][Full Text] [Related]
9. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance. Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940 [TBL] [Abstract][Full Text] [Related]
10. Aqueous cathode for next-generation alkali-ion batteries. Lu Y; Goodenough JB; Kim Y J Am Chem Soc; 2011 Apr; 133(15):5756-9. PubMed ID: 21443190 [TBL] [Abstract][Full Text] [Related]
11. Volatile single-source molecular precursor for the lithium ion battery cathode. Navulla A; Huynh L; Wei Z; Filatov AS; Dikarev EV J Am Chem Soc; 2012 Apr; 134(13):5762-5. PubMed ID: 22443098 [TBL] [Abstract][Full Text] [Related]
12. Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries. Zhang Y; Rohan R; Cai W; Xu G; Sun Y; Lin A; Cheng H ACS Appl Mater Interfaces; 2014 Oct; 6(20):17534-42. PubMed ID: 25225970 [TBL] [Abstract][Full Text] [Related]
13. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte. Ganapathy S; van Eck ER; Kentgens AP; Mulder FM; Wagemaker M Chemistry; 2011 Dec; 17(52):14811-6. PubMed ID: 22120842 [TBL] [Abstract][Full Text] [Related]
14. Thermal Synergy Effect between LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 Enhances the Safety of Blended Cathode for Lithium Ion Batteries. Wang J; Yu Y; Li B; Zhang P; Huang J; Wang F; Zhao S; Gan C; Zhao J ACS Appl Mater Interfaces; 2016 Aug; 8(31):20147-56. PubMed ID: 27448087 [TBL] [Abstract][Full Text] [Related]
15. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-ion batteries. Wang HG; Ma DL; Huang Y; Zhang XB Chemistry; 2012 Jul; 18(29):8987-93. PubMed ID: 22689094 [TBL] [Abstract][Full Text] [Related]
16. Limitations of disordered carbons obtained from biomass as anodes for real lithium-ion batteries. Caballero A; Hernán L; Morales J ChemSusChem; 2011 May; 4(5):658-63. PubMed ID: 21567976 [TBL] [Abstract][Full Text] [Related]
17. Sodium-ion batteries using ion exchange membranes as electrolytes and separators. Cao C; Liu W; Tan L; Liao X; Li L Chem Commun (Camb); 2013 Dec; 49(100):11740-2. PubMed ID: 24202400 [TBL] [Abstract][Full Text] [Related]
18. First investigation on charge-discharge reaction mechanism of aqueous lithium ion batteries: a new anode material of Ag2V4O11 nanobelts. Xu Y; Han X; Zheng L; Wei S; Xie Y Dalton Trans; 2011 Oct; 40(40):10751-7. PubMed ID: 21946774 [TBL] [Abstract][Full Text] [Related]
19. A novel electrolyte additive for improving the interfacial stability of LiMn Huang T; Zheng X; Fang G; Pan Y; Wang W; Wu M RSC Adv; 2018 Nov; 8(68):38831-38835. PubMed ID: 35558326 [TBL] [Abstract][Full Text] [Related]
20. In situ determination of the liquid/solid interface thickness and composition for the Li ion cathode LiMn(1.5)Ni(0.5)O4. Browning JF; Baggetto L; Jungjohann KL; Wang Y; Tenhaeff WE; Keum JK; Wood DL; Veith GM ACS Appl Mater Interfaces; 2014 Nov; 6(21):18569-76. PubMed ID: 25285852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]