BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 22903064)

  • 1. Labile synthetic cadmium complexes are not bioavailable to Pseudokirchneriella subcapitata in resin buffered solutions.
    Verheyen L; Merckx R; Smolders E
    Aquat Toxicol; 2012 Nov; 124-125():66-71. PubMed ID: 22903064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A resin-buffered nutrient solution for controlling metal speciation in the algal bottle assay.
    Verheyen L; Merckx R; Smolders E
    Aquat Toxicol; 2012 Jun; 114-115():200-5. PubMed ID: 22447105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labile complexes facilitate cadmium uptake by Caco-2 cells.
    Verheyen L; Degryse F; Niewold T; Smolders E
    Sci Total Environ; 2012 Jun; 426():90-9. PubMed ID: 22503671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural dissolved organic matter mobilizes Cd but does not affect the Cd uptake by the green algae Pseudokirchneriella subcapitata (Korschikov) in resin buffered solutions.
    Verheyen L; Versieren L; Smolders E
    Aquat Toxicol; 2014 Sep; 154():80-6. PubMed ID: 24874007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labile Cd complexes increase Cd availability to plants.
    Degryse F; Smolders E; Merckx R
    Environ Sci Technol; 2006 Feb; 40(3):830-6. PubMed ID: 16509325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioavailability of cadmium-organic complexes to soil alga--an exception to the free ion model.
    Krishnamurti GS; Megharaj M; Naidu R
    J Agric Food Chem; 2004 Jun; 52(12):3894-9. PubMed ID: 15186113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cadmium accumulation and toxicity in the unicellular alga Pseudokirchneriella subcapitata: Influence of metal-binding exudates and exposure time.
    Paquet N; Lavoie M; Maloney F; Duval JF; Campbell PG; Fortin C
    Environ Toxicol Chem; 2015 Jul; 34(7):1524-32. PubMed ID: 25662885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UPTAKE OF LIPOPHILIC CADMIUM COMPLEXES BY THREE GREEN ALGAE: INFLUENCE OF HUMIC ACID AND ITS pH DEPENDENCE(1).
    Boullemant A; Le Faucheur S; Fortin C; Campbell PG
    J Phycol; 2011 Aug; 47(4):784-91. PubMed ID: 27020014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cadmium uptake by Caco-2 cells: effects of Cd complexation by chloride, glutathione, and phytochelatins.
    Jumarie C; Fortin C; Houde M; Campbell PG; Denizeau F
    Toxicol Appl Pharmacol; 2001 Jan; 170(1):29-38. PubMed ID: 11141353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of partially labile complexes to the DGT metal flux.
    Uribe R; Mongin S; Puy J; Cecília J; Galceran J; Zhang H; Davison W
    Environ Sci Technol; 2011 Jun; 45(12):5317-22. PubMed ID: 21608530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal binding to ligands: cadmium complexes with glutathione revisited.
    Leverrier P; Montigny C; Garrigos M; Champeil P
    Anal Biochem; 2007 Dec; 371(2):215-28. PubMed ID: 17761134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accumulation of cadmium in periphyton under various freshwater speciation conditions.
    Bradac P; Behra R; Sigg L
    Environ Sci Technol; 2009 Oct; 43(19):7291-6. PubMed ID: 19848136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata.
    Koukal B; Guéguen C; Pardos M; Dominik J
    Chemosphere; 2003 Dec; 53(8):953-61. PubMed ID: 14505718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of hydrophobic metal complexes by three freshwater algae: unexpected influence of pH.
    Boullemant A; Lavoie M; Fortin C; Campbell PG
    Environ Sci Technol; 2009 May; 43(9):3308-14. PubMed ID: 19534151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailability of organic phosphorus to Pseudokirchneriella subcapitata as affected by phosphorus starvation: an isotope dilution study.
    Van Moorleghem C; De Schutter N; Smolders E; Merckx R
    Water Res; 2013 Jun; 47(9):3047-56. PubMed ID: 23561496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of interactions between algal densities and cadmium concentrations on Ceriodaphnia dubia fecundity and survival.
    Rodgher S; Luiz Gaeta Espíndola E
    Ecotoxicol Environ Saf; 2008 Nov; 71(3):765-73. PubMed ID: 17936356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of an exchange method to estimate the association and dissociation rate constants of cadmium complexes formed with low-molecular-weight organic acids commonly exuded by plant roots.
    Schneider A; Nguyen C
    J Environ Qual; 2011; 40(6):1857-62. PubMed ID: 22031568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of diffusive gradients in thin films to measure cadmium speciation in solutions with synthetic and natural ligands: comparison with model predictions.
    Unsworth ER; Zhang H; Davison W
    Environ Sci Technol; 2005 Jan; 39(2):624-30. PubMed ID: 15707064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant.
    Degryse F; Shahbazi A; Verheyen L; Smolders E
    Plant Physiol; 2012 Oct; 160(2):1097-109. PubMed ID: 22864584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of cadmium partitioning in microalgae and oysters: contribution to the assessment of trophic transfer.
    Ettajani H; Berthet B; Amiard JC; Chevolot L
    Arch Environ Contam Toxicol; 2001 Feb; 40(2):209-21. PubMed ID: 11243323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.