BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22903412)

  • 1. The apoptosis-resistance in t-AUCB-treated glioblastoma cells depends on activation of Hsp27.
    Li J; Hu W; Lan Q
    J Neurooncol; 2012 Nov; 110(2):187-94. PubMed ID: 22903412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. γ-secretase inhibitor DAPT sensitizes t-AUCB-induced apoptosis of human glioblastoma cells in vitro via blocking the p38 MAPK/MAPKAPK2/Hsp27 pathway.
    Li JY; Li RJ; Wang HD
    Acta Pharmacol Sin; 2014 Jun; 35(6):825-31. PubMed ID: 24793313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. t-AUCB, an improved sEH inhibitor, suppresses human glioblastoma cell growth by activating NF-κB-p65.
    Li J; Liu H; Xing B; Yu Y; Wang H; Chen G; Gu B; Zhang G; Wei D; Gu P; Li M; Hu W
    J Neurooncol; 2012 Jul; 108(3):385-93. PubMed ID: 22382785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of AKT induced by phosphorylated Hsp27 confers the apoptosis-resistance in t-AUCB-treated glioblastoma cells in vitro.
    Li R; Li J; Sang D; Lan Q
    J Neurooncol; 2015 Jan; 121(1):83-9. PubMed ID: 25200832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo.
    Li J; Tang C; Li L; Li R; Fan Y
    J Exp Clin Cancer Res; 2016 Apr; 35():61. PubMed ID: 27039073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro.
    Li J; Tang C; Li L; Li R; Fan Y
    J Neurooncol; 2016 Aug; 129(1):39-45. PubMed ID: 27174198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation status of heat shock protein 27 plays a key role in gemcitabine-induced apoptosis of pancreatic cancer cells.
    Nakashima M; Adachi S; Yasuda I; Yamauchi T; Kawaguchi J; Itani M; Yoshioka T; Matsushima-Nishiwaki R; Hirose Y; Kozawa O; Moriwaki H
    Cancer Lett; 2011 Dec; 313(2):218-25. PubMed ID: 21999932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTEN suppresses SPARC-induced pMAPKAPK2 and inhibits SPARC-induced Ser78 HSP27 phosphorylation in glioma.
    Alam R; Schultz CR; Golembieski WA; Poisson LM; Rempel SA
    Neuro Oncol; 2013 Apr; 15(4):451-61. PubMed ID: 23382286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NSC-87877 inhibits DUSP26 function in neuroblastoma resulting in p53-mediated apoptosis.
    Shi Y; Ma IT; Patel RH; Shang X; Chen Z; Zhao Y; Cheng J; Fan Y; Rojas Y; Barbieri E; Chen Z; Yu Y; Jin J; Kim ES; Shohet JM; Vasudevan SA; Yang J
    Cell Death Dis; 2015 Aug; 6(8):e1841. PubMed ID: 26247726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SB203580 Modulates p38 MAPK Signaling and Dengue Virus-Induced Liver Injury by Reducing MAPKAPK2, HSP27, and ATF2 Phosphorylation.
    Sreekanth GP; Chuncharunee A; Sirimontaporn A; Panaampon J; Noisakran S; Yenchitsomanus PT; Limjindaporn T
    PLoS One; 2016; 11(2):e0149486. PubMed ID: 26901653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quercetin sensitizes human glioblastoma cells to temozolomide in vitro via inhibition of Hsp27.
    Sang DP; Li RJ; Lan Q
    Acta Pharmacol Sin; 2014 Jun; 35(6):832-8. PubMed ID: 24902789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sec6 enhances cell migration and suppresses apoptosis by elevating the phosphorylation of p38 MAPK, MK2, and HSP27.
    Tanaka T; Iino M; Goto K
    Cell Signal; 2018 Sep; 49():1-16. PubMed ID: 29729335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The role of mitogen-activated protein kinase cascades in inhibition of proliferation in human prostate carcinoma cells by raloxifene: an in vitro experiment].
    Zhang YX; Kong CZ
    Zhonghua Yi Xue Za Zhi; 2008 Jan; 88(4):271-5. PubMed ID: 18361842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitogen-activated protein kinase-activated protein kinase 2 mediates resistance to hydrogen peroxide-induced oxidative stress in human hepatobiliary cancer cells.
    Nguyen Ho-Bouldoires TH; Clapéron A; Mergey M; Wendum D; Desbois-Mouthon C; Tahraoui S; Fartoux L; Chettouh H; Merabtene F; Scatton O; Gaestel M; Praz F; Housset C; Fouassier L
    Free Radic Biol Med; 2015 Dec; 89():34-46. PubMed ID: 26169728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of heat shock protein 27 antagonizes TNF-α induced HeLa cell apoptosis via regulating TAK1 ubiquitination and activation of p38 and ERK signaling.
    Qi Z; Shen L; Zhou H; Jiang Y; Lan L; Luo L; Yin Z
    Cell Signal; 2014 Jul; 26(7):1616-25. PubMed ID: 24686082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arachidonic acid induces brain endothelial cell apoptosis via p38-MAPK and intracellular calcium signaling.
    Evans J; Ko Y; Mata W; Saquib M; Eldridge J; Cohen-Gadol A; Leaver HA; Wang S; Rizzo MT
    Microvasc Res; 2015 Mar; 98():145-58. PubMed ID: 24802256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38-MAPKAPK2-Hsp27.
    Lin SP; Lee YT; Wang JY; Miller SA; Chiou SH; Hung MC; Hung SC
    PLoS One; 2012; 7(11):e49605. PubMed ID: 23185379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway.
    Zhai W; Chen D; Shen H; Chen Z; Li H; Yu Z; Chen G
    Mol Brain; 2016 Jun; 9(1):66. PubMed ID: 27301321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potent soluble epoxide hydrolase inhibitor, t-AUCB, acts through PPARγ to modulate the function of endothelial progenitor cells from patients with acute myocardial infarction.
    Xu DY; Davis BB; Wang ZH; Zhao SP; Wasti B; Liu ZL; Li N; Morisseau C; Chiamvimonvat N; Hammock BD
    Int J Cardiol; 2013 Aug; 167(4):1298-304. PubMed ID: 22525341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATM inhibitor KU-55933 increases the TMZ responsiveness of only inherently TMZ sensitive GBM cells.
    Nadkarni A; Shrivastav M; Mladek AC; Schwingler PM; Grogan PT; Chen J; Sarkaria JN
    J Neurooncol; 2012 Dec; 110(3):349-57. PubMed ID: 23054561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.