These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 22903430)

  • 1. Spectroscopic detection and quantification of heme and heme degradation products.
    Neugebauer U; März A; Henkel T; Schmitt M; Popp J
    Anal Bioanal Chem; 2012 Dec; 404(10):2819-29. PubMed ID: 22903430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device.
    Becker M; Budich C; Deckert V; Janasek D
    Analyst; 2009 Jan; 134(1):38-40. PubMed ID: 19082172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman scattering (SERS) optrodes for multiplexed on-chip sensing of nile blue A and oxazine 720.
    Fan M; Wang P; Escobedo C; Sinton D; Brolo AG
    Lab Chip; 2012 Apr; 12(8):1554-60. PubMed ID: 22398836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed microfluidic surface-enhanced Raman spectroscopy.
    Abu-Hatab NA; John JF; Oran JM; Sepaniak MJ
    Appl Spectrosc; 2007 Oct; 61(10):1116-22. PubMed ID: 17958963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical technique for label-free multi-protein detection based on Western blot and surface-enhanced Raman scattering.
    Han XX; Jia HY; Wang YF; Lu ZC; Wang CX; Xu WQ; Zhao B; Ozaki Y
    Anal Chem; 2008 Apr; 80(8):2799-804. PubMed ID: 18290672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convenient formation of nanoparticle aggregates on microfluidic chips for highly sensitive SERS detection of biomolecules.
    Zhou J; Ren K; Zhao Y; Dai W; Wu H
    Anal Bioanal Chem; 2012 Feb; 402(4):1601-9. PubMed ID: 22127578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ surface-enhanced Raman spectroelectrochemical analysis system with a hemin modified nanostructured gold surface.
    Yuan T; Le Thi Ngoc L; van Nieuwkasteele J; Odijk M; van den Berg A; Permentier H; Bischoff R; Carlen ET
    Anal Chem; 2015 Mar; 87(5):2588-92. PubMed ID: 25643066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A reproducible surface-enhanced raman spectroscopy approach. Online SERS measurements in a segmented microfluidic system.
    Strehle KR; Cialla D; Rösch P; Henkel T; Köhler M; Popp J
    Anal Chem; 2007 Feb; 79(4):1542-7. PubMed ID: 17297953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fiber enhanced Raman spectroscopic analysis as a novel method for diagnosis and monitoring of diseases related to hyperbilirubinemia and hyperbiliverdinemia.
    Yan D; Domes C; Domes R; Frosch T; Popp J; Pletz MW; Frosch T
    Analyst; 2016 Oct; 141(21):6104-6115. PubMed ID: 27704083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman detection of the myoglobin nitrito heme Fe-O-N=O/2-nitrovinyl species: implications for helix E-helix F interactions.
    Lambrou A; Pinakoulaki E
    Phys Chem Chem Phys; 2015 Feb; 17(5):3841-9. PubMed ID: 25562073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An optofluidic device for surface enhanced Raman spectroscopy.
    Wang M; Jing N; Chou IH; Cote GL; Kameoka J
    Lab Chip; 2007 May; 7(5):630-2. PubMed ID: 17476383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling.
    Wang C; Yu C
    Nanotechnology; 2015 Mar; 26(9):092001. PubMed ID: 25676092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of low concentrations of ampicillin in milk.
    Andreou C; Mirsafavi R; Moskovits M; Meinhart CD
    Analyst; 2015 Aug; 140(15):5003-5. PubMed ID: 26087055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive marker bands for the detection of spin states of heme in surface-enhanced resonance Raman scattering spectra of metmyoglobin.
    Kitahama Y; Egashira M; Suzuki T; Tanabe I; Ozaki Y
    Analyst; 2014 Dec; 139(24):6421-5. PubMed ID: 25335784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high-throughput biliverdin assay using infrared fluorescence.
    Berlec A; Štrukelj B
    J Vet Diagn Invest; 2014 Jul; 26(4):521-526. PubMed ID: 24903635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the optical properties of bile.
    Baldini F; Bechi P; Cianchi F; Falai A; Fiorillo C; Nassi P
    J Biomed Opt; 2000 Jul; 5(3):321-9. PubMed ID: 10958619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A.
    Galarreta BC; Tabatabaei M; Guieu V; Peyrin E; Lagugné-Labarthet F
    Anal Bioanal Chem; 2013 Feb; 405(5):1613-21. PubMed ID: 23187825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid analysis of trace volatile formaldehyde in aquatic products by derivatization reaction-based surface enhanced Raman spectroscopy.
    Zhang Z; Zhao C; Ma Y; Li G
    Analyst; 2014 Jul; 139(14):3614-21. PubMed ID: 24875278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steric effects of isoleucine 107 on heme reorientation reaction in human myoglobin.
    Ishikawa H; Takahashi S; Ishimori K; Morishima I
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1095-100. PubMed ID: 15485667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Urinary excretion of isomers of biliverdin after destruction in vivo of haemoproteins and haemin.
    Hirota K; Yamamoto S; Itano HA
    Biochem J; 1985 Jul; 229(2):477-83. PubMed ID: 4038276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.