These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 22903462)

  • 1. Timekeeping strategies operate independently from spatial and accuracy demands in beat-interception movements.
    Bieńkiewicz MM; Rodger MW; Craig CM
    Exp Brain Res; 2012 Oct; 222(3):241-53. PubMed ID: 22903462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Timing movements to interval durations specified by discrete or continuous sounds.
    Rodger MW; Craig CM
    Exp Brain Res; 2011 Oct; 214(3):393-402. PubMed ID: 21858501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of pacer-movement continuity and pattern matching on auditory-motor synchronisation.
    Zelic G; Nijhuis P; Charaf SA; Keller PE; Davis C; Kim J; Varlet M
    Exp Brain Res; 2019 Oct; 237(10):2705-2713. PubMed ID: 31420687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanism of timing variability underlying the association between the mean and SD of asynchrony.
    Yang J; Ouyang F; Holm L; Huang Y; Gan L; Zhou L; Chao H; Wang M; He M; Zhang S; Yang B; Wu X
    Hum Mov Sci; 2019 Oct; 67():102500. PubMed ID: 31326744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping.
    Lewis PA; Wing AM; Pope PA; Praamstra P; Miall RC
    Neuropsychologia; 2004; 42(10):1301-12. PubMed ID: 15193939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Working memory and auditory imagery predict sensorimotor synchronisation with expressively timed music.
    Colley ID; Keller PE; Halpern AR
    Q J Exp Psychol (Hove); 2018 Aug; 71(8):1781-1796. PubMed ID: 28797209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size.
    Tresilian JR; Plooy A
    Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing the co-existence of two timing strategies for motor control in a unique task: The synchronisation spatial-tapping task.
    Dione M; Delevoye-Turrell Y
    Hum Mov Sci; 2015 Oct; 43():45-60. PubMed ID: 26203523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic modulation of cortico-muscular coupling during real and imagined sensorimotor synchronisation.
    Nijhuis P; Keller PE; Nozaradan S; Varlet M
    Neuroimage; 2021 Sep; 238():118209. PubMed ID: 34051354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target.
    Tresilian JR; Plooy A; Carroll TJ
    Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The accuracy of interceptive action in time and space.
    Tresilian JR
    Exerc Sport Sci Rev; 2004 Oct; 32(4):167-73. PubMed ID: 15604936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing at peak force may be the hidden target controlled in continuation and synchronization tapping.
    Du Y; Clark JE; Whitall J
    Exp Brain Res; 2017 May; 235(5):1541-1554. PubMed ID: 28251338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospective versus predictive control in timing of hitting a falling ball.
    Katsumata H; Russell DM
    Exp Brain Res; 2012 Feb; 216(4):499-514. PubMed ID: 22120106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keeping with the beat: movement trajectories contribute to movement timing.
    Balasubramaniam R; Wing AM; Daffertshofer A
    Exp Brain Res; 2004 Nov; 159(1):129-34. PubMed ID: 15365663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared timing variability in eye and finger movements increases with interval duration: Support for a distributed timing system below and above one second.
    Karampela O; Holm L; Madison G
    Q J Exp Psychol (Hove); 2015; 68(10):1965-80. PubMed ID: 25607465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of time delay on performance and timing control in dyadic rhythm coordination using finger tapping.
    Koike Y; Ogata T; Nozawa T; Miyake Y
    Sci Rep; 2024 Jul; 14(1):17382. PubMed ID: 39075177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tapping ahead of time: its association with timing variability.
    Yang J; Ouyang F; Holm L; Huang Y; Gan L; Zhou L; Chao H; Wang M; He M; Zhang S; Yang B; Pan J; Wu X
    Psychol Res; 2020 Mar; 84(2):343-351. PubMed ID: 29955958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interval timing and trajectory in unequal amplitude movements.
    Doumas M; Wing AM; Wood K
    Exp Brain Res; 2008 Jul; 189(1):49-60. PubMed ID: 18483723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Moving to the beat" improves timing perception.
    Manning F; Schutz M
    Psychon Bull Rev; 2013 Dec; 20(6):1133-9. PubMed ID: 23670284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal prediction abilities are mediated by motor effector and rhythmic expertise.
    Manning FC; Harris J; Schutz M
    Exp Brain Res; 2017 Mar; 235(3):861-871. PubMed ID: 27909748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.