These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

656 related articles for article (PubMed ID: 22903797)

  • 1. Reactive oxygen species: from health to disease.
    Brieger K; Schiavone S; Miller FJ; Krause KH
    Swiss Med Wkly; 2012; 142():w13659. PubMed ID: 22903797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Physiological Redox Signalling to Oxidant Stress.
    Ward JPT
    Adv Exp Med Biol; 2017; 967():335-342. PubMed ID: 29047097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of the interaction among dietary antioxidants and reactive oxygen species.
    Seifried HE; Anderson DE; Fisher EI; Milner JA
    J Nutr Biochem; 2007 Sep; 18(9):567-79. PubMed ID: 17360173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy.
    Lambeth JD
    Free Radic Biol Med; 2007 Aug; 43(3):332-47. PubMed ID: 17602948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Double-Edged Sword Profile of Redox Signaling: Oxidative Events As Molecular Switches in the Balance between Cell Physiology and Cancer.
    Emanuele S; D'Anneo A; Calvaruso G; Cernigliaro C; Giuliano M; Lauricella M
    Chem Res Toxicol; 2018 Apr; 31(4):201-210. PubMed ID: 29513521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NOX2, NOX4, and mitochondrial-derived reactive oxygen species contribute to angiopoietin-1 signaling and angiogenic responses in endothelial cells.
    Harel S; Mayaki D; Sanchez V; Hussain SNA
    Vascul Pharmacol; 2017 May; 92():22-32. PubMed ID: 28351775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance.
    Nguyen GT; Green ER; Mecsas J
    Front Cell Infect Microbiol; 2017; 7():373. PubMed ID: 28890882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.
    Paravicini TM; Touyz RM
    Diabetes Care; 2008 Feb; 31 Suppl 2():S170-80. PubMed ID: 18227481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Reactive oxygen and nitrogen species in the clinical medicine].
    Macásek J; Zeman M; Vecka M; Vávrová L; Kodydková J; Tvrzická E; Zák A
    Cas Lek Cesk; 2011; 150(8):423-32. PubMed ID: 22026076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-Molecule Inhibitors of Reactive Oxygen Species Production.
    Sassetti E; Clausen MH; Laraia L
    J Med Chem; 2021 May; 64(9):5252-5275. PubMed ID: 33856791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells.
    Domico LM; Cooper KR; Bernard LP; Zeevalk GD
    Neurotoxicology; 2007 Nov; 28(6):1079-91. PubMed ID: 17597214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological targeting of redox regulation systems as new therapeutic approach for psychiatric disorders: A literature overview.
    Schiavone S; Trabace L
    Pharmacol Res; 2016 May; 107():195-204. PubMed ID: 26995306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology.
    Manea A
    Cell Tissue Res; 2010 Dec; 342(3):325-39. PubMed ID: 21052718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of reactive oxygen species and NADPH-oxidase in the development of rat cerebellum.
    Coyoy A; Olguín-Albuerne M; Martínez-Briseño P; Morán J
    Neurochem Int; 2013 Jun; 62(7):998-1011. PubMed ID: 23535068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of hypertension--reactive oxygen species and antioxidants: a basic science update for the clinician.
    Montezano AC; Touyz RM
    Can J Cardiol; 2012 May; 28(3):288-95. PubMed ID: 22445098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?
    de Vries HE; Witte M; Hondius D; Rozemuller AJ; Drukarch B; Hoozemans J; van Horssen J
    Free Radic Biol Med; 2008 Nov; 45(10):1375-83. PubMed ID: 18824091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.