These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

665 related articles for article (PubMed ID: 22903797)

  • 21. Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease?
    de Vries HE; Witte M; Hondius D; Rozemuller AJ; Drukarch B; Hoozemans J; van Horssen J
    Free Radic Biol Med; 2008 Nov; 45(10):1375-83. PubMed ID: 18824091
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NADPH oxidases in the vasculature: molecular features, roles in disease and pharmacological inhibition.
    Selemidis S; Sobey CG; Wingler K; Schmidt HH; Drummond GR
    Pharmacol Ther; 2008 Dec; 120(3):254-91. PubMed ID: 18804121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.
    Cheng X; Ku CH; Siow RC
    Free Radic Biol Med; 2013 Sep; 64():4-11. PubMed ID: 23880293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NADPH oxidases and vascular remodeling in cardiovascular diseases.
    García-Redondo AB; Aguado A; Briones AM; Salaices M
    Pharmacol Res; 2016 Dec; 114():110-120. PubMed ID: 27773825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease.
    Bubb KJ; Birgisdottir AB; Tang O; Hansen T; Figtree GA
    Free Radic Biol Med; 2017 Aug; 109():61-74. PubMed ID: 28188926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of plasma membrane redox systems in hormone action.
    Incerpi S; Fiore AM; De Vito P; Pedersen JZ
    J Pharm Pharmacol; 2007 Dec; 59(12):1711-20. PubMed ID: 18053334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF.
    Kawarazaki T; Kimura S; Iizuka A; Hanamata S; Nibori H; Michikawa M; Imai A; Abe M; Kaya H; Kuchitsu K
    Biochim Biophys Acta; 2013 Dec; 1833(12):2775-2780. PubMed ID: 23872431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vascular NADPH oxidases as drug targets for novel antioxidant strategies.
    Guzik TJ; Harrison DG
    Drug Discov Today; 2006 Jun; 11(11-12):524-33. PubMed ID: 16713904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reactive oxygen species as therapeutic targets in pulmonary hypertension.
    Freund-Michel V; Guibert C; Dubois M; Courtois A; Marthan R; Savineau JP; Muller B
    Ther Adv Respir Dis; 2013 Jun; 7(3):175-200. PubMed ID: 23328248
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aging: a revisited theory based on free radicals generated by NOX family NADPH oxidases.
    Krause KH
    Exp Gerontol; 2007 Apr; 42(4):256-62. PubMed ID: 17126513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Signaling at the Crossroads: Matrix-Derived Proteoglycan and Reactive Oxygen Species Signaling.
    Nastase MV; Janicova A; Wygrecka M; Schaefer L
    Antioxid Redox Signal; 2017 Oct; 27(12):855-873. PubMed ID: 28510506
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular mechanisms of hypertension: role of Nox family NADPH oxidases.
    Sedeek M; Hébert RL; Kennedy CR; Burns KD; Touyz RM
    Curr Opin Nephrol Hypertens; 2009 Mar; 18(2):122-7. PubMed ID: 19430333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive oxygen species in cell wall metabolism and development in plants.
    Kärkönen A; Kuchitsu K
    Phytochemistry; 2015 Apr; 112():22-32. PubMed ID: 25446232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes.
    Al-Gubory KH; Fowler PA; Garrel C
    Int J Biochem Cell Biol; 2010 Oct; 42(10):1634-50. PubMed ID: 20601089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Reduction in Intracellular Reactive Oxygen Species Due to a Mutation in NCF4 Promotes Autoimmune Arthritis in Mice.
    Winter S; Hultqvist Hopkins M; Laulund F; Holmdahl R
    Antioxid Redox Signal; 2016 Dec; 25(18):983-996. PubMed ID: 27231144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species.
    Daiber A
    Biochim Biophys Acta; 2010; 1797(6-7):897-906. PubMed ID: 20122895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Should I stay or should I go: beta-catenin decides under stress.
    Hoogeboom D; Burgering BM
    Biochim Biophys Acta; 2009 Dec; 1796(2):63-74. PubMed ID: 19268509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reactive oxygen species and calcium signals in skeletal muscle: A crosstalk involved in both normal signaling and disease.
    Espinosa A; Henríquez-Olguín C; Jaimovich E
    Cell Calcium; 2016 Sep; 60(3):172-9. PubMed ID: 26965208
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.
    Brandes RP; Weissmann N; Schröder K
    J Mol Cell Cardiol; 2014 Aug; 73():70-9. PubMed ID: 24560815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.