These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22904092)

  • 21. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway.
    Chaveroux C; Sarcinelli C; Barbet V; Belfeki S; Barthelaix A; Ferraro-Peyret C; Lebecque S; Renno T; Bruhat A; Fafournoux P; Manié SN
    Sci Rep; 2016 Jun; 6():27278. PubMed ID: 27255611
    [TBL] [Abstract][Full Text] [Related]  

  • 22. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly.
    Gandin V; Masvidal L; Cargnello M; Gyenis L; McLaughlan S; Cai Y; Tenkerian C; Morita M; Balanathan P; Jean-Jean O; Stambolic V; Trost M; Furic L; Larose L; Koromilas AE; Asano K; Litchfield D; Larsson O; Topisirovic I
    Nat Commun; 2016 Apr; 7():11127. PubMed ID: 27040916
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases.
    Kline CL; Van den Heuvel AP; Allen JE; Prabhu VV; Dicker DT; El-Deiry WS
    Sci Signal; 2016 Feb; 9(415):ra18. PubMed ID: 26884600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of duplex-specific nuclease in ribosome profiling and a user-friendly software package for Ribo-seq data analysis.
    Chung BY; Hardcastle TJ; Jones JD; Irigoyen N; Firth AE; Baulcombe DC; Brierley I
    RNA; 2015 Oct; 21(10):1731-45. PubMed ID: 26286745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular Bacterial Pathogens Trigger the Formation of U Small Nuclear RNA Bodies (U Bodies) through Metabolic Stress Induction.
    Tsalikis J; Tattoli I; Ling A; Sorbara MT; Croitoru DO; Philpott DJ; Girardin SE
    J Biol Chem; 2015 Aug; 290(34):20904-20918. PubMed ID: 26134566
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does eIF3 promote reinitiation after translation of short upstream ORFs also in mammalian cells?
    Hronová V; Mohammad MP; Wagner S; Pánek J; Gunišová S; Zeman J; Poncová K; Valášek LS
    RNA Biol; 2017 Dec; 14(12):1660-1667. PubMed ID: 28745933
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATF4, an ER stress and hypoxia-inducible transcription factor and its potential role in hypoxia tolerance and tumorigenesis.
    Ye J; Koumenis C
    Curr Mol Med; 2009 May; 9(4):411-6. PubMed ID: 19519398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Translation termination efficiency modulates ATF4 response by regulating ATF4 mRNA translation at 5' short ORFs.
    Ait Ghezala H; Jolles B; Salhi S; Castrillo K; Carpentier W; Cagnard N; Bruhat A; Fafournoux P; Jean-Jean O
    Nucleic Acids Res; 2012 Oct; 40(19):9557-70. PubMed ID: 22904092
    [TBL] [Abstract][Full Text] [Related]  

  • 29. mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4.
    Park Y; Reyna-Neyra A; Philippe L; Thoreen CC
    Cell Rep; 2017 May; 19(6):1083-1090. PubMed ID: 28494858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Divergent effects of translation termination factor eRF3A and nonsense-mediated mRNA decay factor UPF1 on the expression of uORF carrying mRNAs and ribosome protein genes.
    Aliouat A; Hatin I; Bertin P; François P; Stierlé V; Namy O; Salhi S; Jean-Jean O
    RNA Biol; 2020 Feb; 17(2):227-239. PubMed ID: 31619139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eukaryotic Initiation Factor 5B (eIF5B) Cooperates with eIF1A and eIF5 to Facilitate uORF2-Mediated Repression of ATF4 Translation.
    Ross JA; Bressler KR; Thakor N
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30551605
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activating transcription factor 4 and CCAAT/enhancer-binding protein-beta negatively regulate the mammalian target of rapamycin via Redd1 expression in response to oxidative and endoplasmic reticulum stress.
    Jin HO; Seo SK; Woo SH; Kim ES; Lee HC; Yoo DH; An S; Choe TB; Lee SJ; Hong SI; Rhee CH; Kim JI; Park IC
    Free Radic Biol Med; 2009 Apr; 46(8):1158-67. PubMed ID: 19439225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Involvement of human release factors eRF3a and eRF3b in translation termination and regulation of the termination complex formation.
    Chauvin C; Salhi S; Le Goff C; Viranaicken W; Diop D; Jean-Jean O
    Mol Cell Biol; 2005 Jul; 25(14):5801-11. PubMed ID: 15987998
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of GCN2 as new redox regulator for oxidative stress prevention in vivo.
    Chaveroux C; Lambert-Langlais S; Parry L; Carraro V; Jousse C; Maurin AC; Bruhat A; Marceau G; Sapin V; Averous J; Fafournoux P
    Biochem Biophys Res Commun; 2011 Nov; 415(1):120-4. PubMed ID: 22020073
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation.
    Palam LR; Baird TD; Wek RC
    J Biol Chem; 2011 Apr; 286(13):10939-49. PubMed ID: 21285359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acid availability controls TRB3 transcription in liver through the GCN2/eIF2α/ATF4 pathway.
    Carraro V; Maurin AC; Lambert-Langlais S; Averous J; Chaveroux C; Parry L; Jousse C; Ord D; Ord T; Fafournoux P; Bruhat A
    PLoS One; 2010 Dec; 5(12):e15716. PubMed ID: 21203563
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.