BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 22904161)

  • 1. Regulation of cardiac alternans by β-adrenergic signaling pathways.
    Florea SM; Blatter LA
    Am J Physiol Heart Circ Physiol; 2012 Oct; 303(8):H1047-56. PubMed ID: 22904161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial calcium uniporter complex activation protects against calcium alternans in atrial myocytes.
    Oropeza-Almazán Y; Blatter LA
    Am J Physiol Heart Circ Physiol; 2020 Oct; 319(4):H873-H881. PubMed ID: 32857593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta 2-adrenergic receptor signaling acts via NO release to mediate ACh-induced activation of ATP-sensitive K+ current in cat atrial myocytes.
    Wang YG; Dedkova EN; Steinberg SF; Blatter LA; Lipsius SL
    J Gen Physiol; 2002 Jan; 119(1):69-82. PubMed ID: 11773239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of cAMP-Dependent PKA Activates β2-Adrenergic Receptor Stimulation of Cytosolic Phospholipase A2 via Raf-1/MEK/ERK and IP3-Dependent Ca2+ Signaling in Atrial Myocytes.
    Pabbidi MR; Ji X; Maxwell JT; Mignery GA; Samarel AM; Lipsius SL
    PLoS One; 2016; 11(12):e0168505. PubMed ID: 27977772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.
    Dries E; Santiago DJ; Johnson DM; Gilbert G; Holemans P; Korte SM; Roderick HL; Sipido KR
    J Physiol; 2016 Oct; 594(20):5923-5939. PubMed ID: 27121757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide signalling by selective beta(2)-adrenoceptor stimulation prevents ACh-induced inhibition of beta(2)-stimulated Ca(2+) current in cat atrial myocytes.
    Dedkova EN; Wang YG; Blatter LA; Lipsius SL
    J Physiol; 2002 Aug; 542(Pt 3):711-23. PubMed ID: 12154173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laminin enhances beta(2)-adrenergic receptor stimulation of L-type Ca(2+) current via cytosolic phospholipase A(2) signalling in cat atrial myocytes.
    Pabbidi MR; Ji X; Samarel AM; Lipsius SL
    J Physiol; 2009 Oct; 587(Pt 20):4785-97. PubMed ID: 19703961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological modulation of the hyperpolarization-activated current (I f) in human atrial myocytes: focus on G protein-coupled receptors.
    Lonardo G; Cerbai E; Casini S; Giunti G; Bonacchi M; Battaglia F; Fiorani B; Stefano PL; Sani G; Mugelli A
    J Mol Cell Cardiol; 2005 Mar; 38(3):453-60. PubMed ID: 15733905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of mitochondria for the regulation of cardiac alternans.
    Florea SM; Blatter LA
    Front Physiol; 2010; 1():141. PubMed ID: 21423381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic protein kinase a activities induced by beta-adrenoceptors dictate signaling propagation for substrate phosphorylation and myocyte contraction.
    Soto D; De Arcangelis V; Zhang J; Xiang Y
    Circ Res; 2009 Mar; 104(6):770-9. PubMed ID: 19213958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase.
    Curran J; Hinton MJ; Ríos E; Bers DM; Shannon TR
    Circ Res; 2007 Feb; 100(3):391-8. PubMed ID: 17234966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanisms of calcium cycling and action potential dynamics in cardiac alternans.
    Kanaporis G; Blatter LA
    Circ Res; 2015 Feb; 116(5):846-56. PubMed ID: 25532796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice.
    Devic E; Xiang Y; Gould D; Kobilka B
    Mol Pharmacol; 2001 Sep; 60(3):577-83. PubMed ID: 11502890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in cardiac beta(2)-adrenergic signal transduction.
    Xiao RP; Cheng H; Zhou YY; Kuschel M; Lakatta EG
    Circ Res; 1999 Nov; 85(11):1092-100. PubMed ID: 10571541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis.
    Tomek J; Rodriguez B; Bub G; Heijman J
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H338-H353. PubMed ID: 28550171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-Adrenergic induced SR Ca
    Pereira L; Bare DJ; Galice S; Shannon TR; Bers DM
    J Mol Cell Cardiol; 2017 Jul; 108():8-16. PubMed ID: 28476660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells.
    Hüser J; Wang YG; Sheehan KA; Cifuentes F; Lipsius SL; Blatter LA
    J Physiol; 2000 May; 524 Pt 3(Pt 3):795-806. PubMed ID: 10790159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. {beta}1-Adrenergic receptor activation induces mouse cardiac myocyte death through both L-type calcium channel-dependent and -independent pathways.
    Wang W; Zhang H; Gao H; Kubo H; Berretta RM; Chen X; Houser SR
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H322-31. PubMed ID: 20495143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action potential shortening rescues atrial calcium alternans.
    Kanaporis G; Kalik ZM; Blatter LA
    J Physiol; 2019 Feb; 597(3):723-740. PubMed ID: 30412286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents.
    Livshitz LM; Rudy Y
    Am J Physiol Heart Circ Physiol; 2007 Jun; 292(6):H2854-66. PubMed ID: 17277017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.