BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22904170)

  • 1. Nedd4-2 does not regulate wt-CFTR in human airway epithelial cells.
    Koeppen K; Chapline C; Sato JD; Stanton BA
    Am J Physiol Lung Cell Mol Physiol; 2012 Oct; 303(8):L720-7. PubMed ID: 22904170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation.
    Ramachandran S; Osterhaus SR; Parekh KR; Jacobi AM; Behlke MA; McCray PB
    J Biol Chem; 2016 Dec; 291(49):25489-25504. PubMed ID: 27756846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rescue of DeltaF508-CFTR by the SGK1/Nedd4-2 signaling pathway.
    Caohuy H; Jozwik C; Pollard HB
    J Biol Chem; 2009 Sep; 284(37):25241-53. PubMed ID: 19617352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-Cbl facilitates endocytosis and lysosomal degradation of cystic fibrosis transmembrane conductance regulator in human airway epithelial cells.
    Ye S; Cihil K; Stolz DB; Pilewski JM; Stanton BA; Swiatecka-Urban A
    J Biol Chem; 2010 Aug; 285(35):27008-27018. PubMed ID: 20525683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR).
    Caohuy H; Yang Q; Eudy Y; Ha TA; Xu AE; Glover M; Frizzell RA; Jozwik C; Pollard HB
    J Biol Chem; 2014 Dec; 289(52):35953-68. PubMed ID: 25384981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval.
    Bomberger JM; Coutermarsh BA; Barnaby RL; Sato JD; Chapline MC; Stanton BA
    PLoS One; 2014; 9(2):e89599. PubMed ID: 24586903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The short apical membrane half-life of rescued {Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of {Delta}F508-CFTR in polarized human airway epithelial cells.
    Swiatecka-Urban A; Brown A; Moreau-Marquis S; Renuka J; Coutermarsh B; Barnaby R; Karlson KH; Flotte TR; Fukuda M; Langford GM; Stanton BA
    J Biol Chem; 2005 Nov; 280(44):36762-72. PubMed ID: 16131493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis transmembrane conductance regulator inhibits epithelial Na+ channels carrying Liddle's syndrome mutations.
    Hopf A; Schreiber R; Mall M; Greger R; Kunzelmann K
    J Biol Chem; 1999 May; 274(20):13894-9. PubMed ID: 10318798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia.
    Kreda SM; Mall M; Mengos A; Rochelle L; Yankaskas J; Riordan JR; Boucher RC
    Mol Biol Cell; 2005 May; 16(5):2154-67. PubMed ID: 15716351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Down-regulation of intestinal apical calcium entry channel TRPV6 by ubiquitin E3 ligase Nedd4-2.
    Zhang W; Na T; Wu G; Jing H; Peng JB
    J Biol Chem; 2010 Nov; 285(47):36586-96. PubMed ID: 20843805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ERp29 regulates DeltaF508 and wild-type cystic fibrosis transmembrane conductance regulator (CFTR) trafficking to the plasma membrane in cystic fibrosis (CF) and non-CF epithelial cells.
    Suaud L; Miller K; Alvey L; Yan W; Robay A; Kebler C; Kreindler JL; Guttentag S; Hubbard MJ; Rubenstein RC
    J Biol Chem; 2011 Jun; 286(24):21239-53. PubMed ID: 21525008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CFTR-NHERF2-LPA₂ Complex in the Airway and Gut Epithelia.
    Zhang W; Zhang Z; Zhang Y; Naren AP
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28869532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nedd4-1 and beta-arrestin-1 are key regulators of Na+/H+ exchanger 1 ubiquitylation, endocytosis, and function.
    Simonin A; Fuster D
    J Biol Chem; 2010 Dec; 285(49):38293-303. PubMed ID: 20855896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+/H+ exchanger regulatory factor isoform 1 overexpression modulates cystic fibrosis transmembrane conductance regulator (CFTR) expression and activity in human airway 16HBE14o- cells and rescues DeltaF508 CFTR functional expression in cystic fibrosis cells.
    Guerra L; Fanelli T; Favia M; Riccardi SM; Busco G; Cardone RA; Carrabino S; Weinman EJ; Reshkin SJ; Conese M; Casavola V
    J Biol Chem; 2005 Dec; 280(49):40925-33. PubMed ID: 16203733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.
    Bomberger JM; Coutermarsh BA; Barnaby RL; Stanton BA
    J Biol Chem; 2012 May; 287(21):17130-17139. PubMed ID: 22467879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta-oestradiol rescues DeltaF508CFTR functional expression in human cystic fibrosis airway CFBE41o- cells through the up-regulation of NHERF1.
    Fanelli T; Cardone RA; Favia M; Guerra L; Zaccolo M; Monterisi S; De Santis T; Riccardi SM; Reshkin SJ; Casavola V
    Biol Cell; 2008 Jul; 100(7):399-412. PubMed ID: 18184109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the scaffold protein RACK1 in apical expression of CFTR.
    Auerbach M; Liedtke CM
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C294-304. PubMed ID: 17409124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purinergic signaling underlies CFTR control of human airway epithelial cell volume.
    Braunstein GM; Zsembery A; Tucker TA; Schwiebert EM
    J Cyst Fibros; 2004 Jun; 3(2):99-117. PubMed ID: 15463893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The deubiquitinating enzyme USP10 regulates the endocytic recycling of CFTR in airway epithelial cells.
    Bomberger JM; Barnaby RL; Stanton BA
    Channels (Austin); 2010; 4(3):150-4. PubMed ID: 20215869
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deleterious impact of Pseudomonas aeruginosa on cystic fibrosis transmembrane conductance regulator function and rescue in airway epithelial cells.
    Trinh NT; Bilodeau C; Maillé É; Ruffin M; Quintal MC; Desrosiers MY; Rousseau S; Brochiero E
    Eur Respir J; 2015 Jun; 45(6):1590-602. PubMed ID: 25792634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.