These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22904279)

  • 1. Mutational and structural analysis of L-N-carbamoylase reveals new insights into a peptidase M20/M25/M40 family member.
    Martínez-Rodríguez S; García-Pino A; Las Heras-Vázquez FJ; Clemente-Jiménez JM; Rodríguez-Vico F; García-Ruiz JM; Loris R; Gavira JA
    J Bacteriol; 2012 Nov; 194(21):5759-68. PubMed ID: 22904279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of substrate promiscuity of an L-carbamoyl amino acid amidohydrolase from Geobacillus stearothermophilus CECT43.
    Pozo-Dengra J; Martínez-Gómez AI; Martínez-Rodríguez S; Clemente-Jiménez JM; Rodríguez-Vico F; Las Heras-Vázquez FJ
    Biotechnol Prog; 2010; 26(4):954-9. PubMed ID: 20730754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization and preliminary crystallographic studies of the recombinant L-N-carbamoylase from Geobacillus stearothermophilus CECT43.
    Martínez-Rodríguez S; García-Pino A; Las Heras-Vázquez FJ; Clemente-Jiménez JM; Rodríguez-Vico F; Loris R; García-Ruiz JM; Gavira JA
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2008 Dec; 64(Pt 12):1135-8. PubMed ID: 19052368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic dynamic kinetic resolution of racemic N-formyl- and N-carbamoyl-amino acids using immobilized L-N-carbamoylase and N-succinyl-amino acid racemase.
    Soriano-Maldonado P; Las Heras-Vazquez FJ; Clemente-Jimenez JM; Rodriguez-Vico F; Martínez-Rodríguez S
    Appl Microbiol Biotechnol; 2015 Jan; 99(1):283-91. PubMed ID: 24993356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-specificity relationships in Abp, a GH27 β-L-arabinopyranosidase from Geobacillus stearothermophilus T6.
    Lansky S; Salama R; Solomon HV; Feinberg H; Belrhali H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2014 Nov; 70(Pt 11):2994-3012. PubMed ID: 25372689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Essential roles of zinc ligation and enzyme dimerization for catalysis in the aminoacylase-1/M20 family.
    Lindner HA; Lunin VV; Alary A; Hecker R; Cygler M; Ménard R
    J Biol Chem; 2003 Nov; 278(45):44496-504. PubMed ID: 12933810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbamoylases: characteristics and applications in biotechnological processes.
    Martínez-Rodríguez S; Martínez-Gómez AI; Rodríguez-Vico F; Clemente-Jiménez JM; Las Heras-Vázquez FJ
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):441-58. PubMed ID: 19830420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and mutational studies of l-N-carbamoylase from Sinorhizobium meliloti CECT 4114 catalytic centre.
    Martínez-Rodríguez S; Andújar-Sánchez M; Clemente Jiménez JM; Jara-Pérez V; Rodríguez-Vico F; Las Heras-Vázquez FJ
    Biochimie; 2006 Jul; 88(7):837-47. PubMed ID: 16519985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulation of the active site loops of D-hydantoinase, a (beta/alpha)8-barrel protein, for modulation of the substrate specificity.
    Cheon YH; Park HS; Kim JH; Kim Y; Kim HS
    Biochemistry; 2004 Jun; 43(23):7413-20. PubMed ID: 15182184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the catalytic center of porcine aminoacylase 1 by site-directed mutagenesis, homology modeling and substrate docking.
    Liu Z; Zhen Z; Zuo Z; Wu Y; Liu A; Yi Q; Li W
    J Biochem; 2006 Mar; 139(3):421-30. PubMed ID: 16567407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dimerization domain in DapE enzymes is required for catalysis.
    Nocek B; Starus A; Makowska-Grzyska M; Gutierrez B; Sanchez S; Jedrzejczak R; Mack JC; Olsen KW; Joachimiak A; Holz RC
    PLoS One; 2014; 9(5):e93593. PubMed ID: 24806882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus.
    Matsumoto Y; Tosha T; Pisliakov AV; Hino T; Sugimoto H; Nagano S; Sugita Y; Shiro Y
    Nat Struct Mol Biol; 2012 Jan; 19(2):238-45. PubMed ID: 22266822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the essential catalytic residues and substrate affinity in the thermoactive Bacillus stearothermophilus US100 L-arabinose isomerase by site-directed mutagenesis.
    Rhimi M; Juy M; Aghajari N; Haser R; Bejar S
    J Bacteriol; 2007 May; 189(9):3556-63. PubMed ID: 17337581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of D-hydantoinase from Bacillus stearothermophilus: insight into the stereochemistry of enantioselectivity.
    Cheon YH; Kim HS; Han KH; Abendroth J; Niefind K; Schomburg D; Wang J; Kim Y
    Biochemistry; 2002 Jul; 41(30):9410-7. PubMed ID: 12135362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of LysK, an enzyme catalyzing the last step of lysine biosynthesis in Thermus thermophilus, in complex with lysine: Insight into the mechanism for recognition of the amino-group carrier protein, LysW.
    Fujita S; Cho SH; Yoshida A; Hasebe F; Tomita T; Kuzuyama T; Nishiyama M
    Biochem Biophys Res Commun; 2017 Sep; 491(2):409-415. PubMed ID: 28720495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relationships in Gan42B, an intracellular GH42 β-galactosidase from Geobacillus stearothermophilus.
    Solomon HV; Tabachnikov O; Lansky S; Salama R; Feinberg H; Shoham Y; Shoham G
    Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2433-48. PubMed ID: 26627651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism.
    Nocek B; Reidl C; Starus A; Heath T; Bienvenue D; Osipiuk J; Jedrzejczak R; Joachimiak A; Becker DP; Holz RC
    Biochemistry; 2018 Feb; 57(5):574-584. PubMed ID: 29272107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray crystallographic analysis of 6-aminohexanoate-dimer hydrolase: molecular basis for the birth of a nylon oligomer-degrading enzyme.
    Negoro S; Ohki T; Shibata N; Mizuno N; Wakitani Y; Tsurukame J; Matsumoto K; Kawamoto I; Takeo M; Higuchi Y
    J Biol Chem; 2005 Nov; 280(47):39644-52. PubMed ID: 16162506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyanuric acid hydrolase: evolutionary innovation by structural concatenation.
    Peat TS; Balotra S; Wilding M; French NG; Briggs LJ; Panjikar S; Cowieson N; Newman J; Scott C
    Mol Microbiol; 2013 Jun; 88(6):1149-63. PubMed ID: 23651355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of yeast beta-alanine synthase complexes reveal the mode of substrate binding and large scale domain closure movements.
    Lundgren S; Andersen B; Piskur J; Dobritzsch D
    J Biol Chem; 2007 Dec; 282(49):36037-47. PubMed ID: 17916556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.