These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22905024)

  • 21. Dynamic reweighting of visual and vestibular cues during self-motion perception.
    Fetsch CR; Turner AH; DeAngelis GC; Angelaki DE
    J Neurosci; 2009 Dec; 29(49):15601-12. PubMed ID: 20007484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experience-dependent integration of texture and motion cues to depth.
    Jacobs RA; Fine I
    Vision Res; 1999 Dec; 39(24):4062-75. PubMed ID: 10748939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
    Weilnhammer VA; Stuke H; Sterzer P; Schmack K
    J Neurosci; 2018 May; 38(21):5008-5021. PubMed ID: 29712780
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impaired tilt perception in Parkinson's disease: a central vestibular integration failure.
    Bertolini G; Wicki A; Baumann CR; Straumann D; Palla A
    PLoS One; 2015; 10(4):e0124253. PubMed ID: 25874868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gravity dependence of the effect of optokinetic stimulation on the subjective visual vertical.
    Ward BK; Bockisch CJ; Caramia N; Bertolini G; Tarnutzer AA
    J Neurophysiol; 2017 May; 117(5):1948-1958. PubMed ID: 28148642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial attention, precision, and Bayesian inference: a study of saccadic response speed.
    Vossel S; Mathys C; Daunizeau J; Bauer M; Driver J; Friston KJ; Stephan KE
    Cereb Cortex; 2014 Jun; 24(6):1436-50. PubMed ID: 23322402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biasing the brain's attentional set: I. cue driven deployments of intersensory selective attention.
    Foxe JJ; Simpson GV; Ahlfors SP; Saron CD
    Exp Brain Res; 2005 Oct; 166(3-4):370-92. PubMed ID: 16086144
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On the origins of suboptimality in human probabilistic inference.
    Acerbi L; Vijayakumar S; Wolpert DM
    PLoS Comput Biol; 2014 Jun; 10(6):e1003661. PubMed ID: 24945142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning and inference using complex generative models in a spatial localization task.
    Bejjanki VR; Knill DC; Aslin RN
    J Vis; 2016; 16(5):9. PubMed ID: 26967015
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ideal observer perturbation analysis reveals human strategies for inferring surface orientation from texture.
    Knill DC
    Vision Res; 1998 Sep; 38(17):2635-56. PubMed ID: 12116709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perceptual biases and cue weighting in perception of 3D slant from texture and stereo information.
    Saunders JA; Chen Z
    J Vis; 2015 Feb; 15(2):. PubMed ID: 25761332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal cueing enhances neuronal and behavioral discrimination performance in rat whisker system.
    Lee CCY; Clifford CWG; Arabzadeh E
    J Neurophysiol; 2019 Mar; 121(3):1048-1058. PubMed ID: 30699040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adapting internal statistical models for interpreting visual cues to depth.
    Seydell A; Knill DC; Trommershäuser J
    J Vis; 2010 Apr; 10(4):1.1-27. PubMed ID: 20465321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Symbolic Learning and Reasoning With Noisy Data for Probabilistic Anchoring.
    Zuidberg Dos Martires P; Kumar N; Persson A; Loutfi A; De Raedt L
    Front Robot AI; 2020; 7():100. PubMed ID: 33501267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multisensory oddity detection as bayesian inference.
    Hospedales T; Vijayakumar S
    PLoS One; 2009; 4(1):e4205. PubMed ID: 19145254
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning to integrate arbitrary signals from vision and touch.
    Ernst MO
    J Vis; 2007 Jun; 7(5):7.1-14. PubMed ID: 18217847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparison of methods of assessing cue combination during navigation.
    Newman PM; McNamara TP
    Behav Res Methods; 2021 Feb; 53(1):390-398. PubMed ID: 32705659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does Temporal Expectation Driven by Rhythmic Cues Differ From That Driven by Symbolic Cues Across the Millisecond and Second Range?
    Ren Y; Xu Z; Wu F; Ejima Y; Yang J; Takahashi S; Wu Q; Wu J
    Perception; 2019 Jun; 48(6):515-529. PubMed ID: 31046568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Correctly establishing evidence for cue combination via gains in sensory precision: Why the choice of comparator matters.
    Scheller M; Nardini M
    Behav Res Methods; 2024 Apr; 56(4):2842-2858. PubMed ID: 37730934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cue combination used to update the navigator's self-localization, not the home location.
    Zhang L; Mou W; Lei X; Du Y
    J Exp Psychol Learn Mem Cogn; 2020 Dec; 46(12):2314-2339. PubMed ID: 31789563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.