These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 22905255)

  • 21. Micro-scale and microfluidic devices for neurobiology.
    Taylor AM; Jeon NL
    Curr Opin Neurobiol; 2010 Oct; 20(5):640-7. PubMed ID: 20739175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A diencephalic slice preparation and chamber for studying neuronal thermosensitivity.
    Dean JB; Boulant JA
    J Neurosci Methods; 1988 Apr; 23(3):225-32. PubMed ID: 3367659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organotypic hippocampal slice cultures for studies of brain damage, neuroprotection and neurorepair.
    Noraberg J; Poulsen FR; Blaabjerg M; Kristensen BW; Bonde C; Montero M; Meyer M; Gramsbergen JB; Zimmer J
    Curr Drug Targets CNS Neurol Disord; 2005 Aug; 4(4):435-52. PubMed ID: 16101559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic device to attain high spatial and temporal control of oxygen.
    Lam SF; Shirure VS; Chu YE; Soetikno AG; George SC
    PLoS One; 2018; 13(12):e0209574. PubMed ID: 30571786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium.
    Vollmer AP; Probstein RF; Gilbert R; Thorsen T
    Lab Chip; 2005 Oct; 5(10):1059-66. PubMed ID: 16175261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluidic system for long-term in vitro culturing and monitoring of organotypic brain slices.
    Bakmand T; Troels-Smith AR; Dimaki M; Nissen JD; Andersen KB; Sasso L; Waagepetersen HS; Gramsbergen JB; Svendsen WE
    Biomed Microdevices; 2015 Aug; 17(4):71. PubMed ID: 26123417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes.
    Leclerc E; Sakai Y; Fujii T
    Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An organotypic uniaxial strain model using microfluidics.
    Dollé JP; Morrison B; Schloss RS; Yarmush ML
    Lab Chip; 2013 Feb; 13(3):432-42. PubMed ID: 23233120
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High oxygen tension leads to acute cell death in organotypic hippocampal slice cultures.
    Pomper JK; Graulich J; Kovacs R; Hoffmann U; Gabriel S; Heinemann U
    Brain Res Dev Brain Res; 2001 Jan; 126(1):109-16. PubMed ID: 11172892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Devices for Behavioral Analysis, Microscopy, and Neuronal Imaging in Caenorhabditis elegans.
    Lagoy RC; Albrecht DR
    Methods Mol Biol; 2015; 1327():159-79. PubMed ID: 26423974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Altered regulation of brain-derived neurotrophic factor protein in hippocampus following slice preparation.
    Danzer SC; Pan E; Nef S; Parada LF; McNamara JO
    Neuroscience; 2004; 126(4):859-69. PubMed ID: 15207321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A microfluidic chip for sustained oxygen gradient formation in the intestine
    Delong LM; Witt CE; Pennell M; Ross AE
    Lab Chip; 2024 Mar; 24(7):1918-1929. PubMed ID: 38372633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures.
    Bonde C; Noraberg J; Noer H; Zimmer J
    Neuroscience; 2005; 136(3):779-94. PubMed ID: 16344151
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Horizontal Hippocampal Slices of the Mouse Brain.
    Van Hoeymissen E; Philippaert K; Vennekens R; Vriens J; Held K
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 33044449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.
    Lovchik RD; Tonna N; Bianco F; Matteoli M; Delamarche E
    Biomed Microdevices; 2010 Apr; 12(2):275-82. PubMed ID: 20013313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A recording chamber for small volume slice electrophysiology.
    Dondzillo A; Quinn KD; Cruickshank-Quinn CI; Reisdorph N; Lei TC; Klug A
    J Neurophysiol; 2015 Sep; 114(3):2053-64. PubMed ID: 26203105
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures.
    Adamchik Y; Frantseva MV; Weisspapir M; Carlen PL; Perez Velazquez JL
    Brain Res Brain Res Protoc; 2000 Apr; 5(2):153-8. PubMed ID: 10775835
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation of oxygen gradients with arbitrary shapes in a microfluidic device.
    Adler M; Polinkovsky M; Gutierrez E; Groisman A
    Lab Chip; 2010 Feb; 10(3):388-91. PubMed ID: 20091013
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hippocampal slices in experimental and human epilepsy.
    Schwartzkroin PA
    Adv Neurol; 1986; 44():991-1010. PubMed ID: 3706029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.