These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 22905517)
1. Structural, microchemistry, and hydrogenation properties of TiMn0.4Fe0.2V0.4, TiMn0.1Fe0.2V0.7 and Ti0.4Zr0.6Mn0.4Fe0.2V0.4 metal hydrides. Koultoukis ED; Makridis SS; Röntzsch L; Pavlidou E; Ioannidou A; Kikkinides ES; Stubos AK J Nanosci Nanotechnol; 2012 Jun; 12(6):4688-96. PubMed ID: 22905517 [TBL] [Abstract][Full Text] [Related]
2. Synthesis and characterization of TiFe(0.7-x)Mn(0.3)V(x) (x = 0.05, and 0.1) and Ti(1-y)Ta(y)Fe(0.7)Mn(0.3) (y = 0.2, and 0.4) nanostructured metal hydrides for low temperature applications. Anagnostou NG; Makridis SS; Kikkinides ES; Christodoulou CN; Stubos AK J Nanosci Nanotechnol; 2012 Dec; 12(12):9067-75. PubMed ID: 23447959 [TBL] [Abstract][Full Text] [Related]
3. The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties. Tylianakis E; Klontzas E; Froudakis GE Nanotechnology; 2009 May; 20(20):204030. PubMed ID: 19420678 [TBL] [Abstract][Full Text] [Related]
4. Properties of nanoscale metal hydrides. Fichtner M Nanotechnology; 2009 May; 20(20):204009. PubMed ID: 19420657 [TBL] [Abstract][Full Text] [Related]
5. Kinetic limitations of the Mg(2)Si system for reversible hydrogen storage. Kelly ST; Van Atta SL; Vajo JJ; Olson GL; Clemens BM Nanotechnology; 2009 May; 20(20):204017. PubMed ID: 19420665 [TBL] [Abstract][Full Text] [Related]
6. On the chemical state and distribution of Zr- and V-based additives in reactive hydride composites. Bösenberg U; Vainio U; Pranzas PK; von Colbe JM; Goerigk G; Welter E; Dornheim M; Schreyer A; Bormann R Nanotechnology; 2009 May; 20(20):204003. PubMed ID: 19420651 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics of hydrogen adsorption in MOF-177 at low temperatures: measurements and modelling. Poirier E; Dailly A Nanotechnology; 2009 May; 20(20):204006. PubMed ID: 19420654 [TBL] [Abstract][Full Text] [Related]
9. The nanostructure and hydrogenation reaction of Mg50Co50 BCC alloy prepared by ball-milling. Matsuda J; Shao H; Nakamura Y; Akiba E Nanotechnology; 2009 May; 20(20):204015. PubMed ID: 19420663 [TBL] [Abstract][Full Text] [Related]
10. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Kim KC; Dai B; Karl Johnson J; Sholl DS Nanotechnology; 2009 May; 20(20):204001. PubMed ID: 19420649 [TBL] [Abstract][Full Text] [Related]
11. Microstructure Optimization of Mg-Alloys by the ECAP Process Including Numerical Simulation, SPD Treatments, Characterization, and Hydrogen Sorption Properties. Skryabina N; Aptukov V; Romanov P; Fruchart D; de Rango P; Girard G; Grandini C; Sandim H; Huot J; Lang J; Cantelli R; Leardini F Molecules; 2018 Dec; 24(1):. PubMed ID: 30591659 [TBL] [Abstract][Full Text] [Related]
12. An x-ray photoemission electron microscopy study of the formation of Ti-Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling. Dobbins T; Abrecht M; Uprety Y; Moore K Nanotechnology; 2009 May; 20(20):204014. PubMed ID: 19420662 [TBL] [Abstract][Full Text] [Related]
13. Influence of Zr Addition on the Microstructure and Hydrogenation Kinetics of Ti Zeng Q; Wang F; Li Z; Rong M; Wang J; Wang Z Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541521 [TBL] [Abstract][Full Text] [Related]