These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 22905585)

  • 1. Synthesis and electrochemical performances of LiNiCuZn oxides as anode and cathode catalyst for low temperature solid oxide fuel cell.
    Jing Y; Qin H; Liu Q; Singh M; Zhu B
    J Nanosci Nanotechnol; 2012 Jun; 12(6):5102-5. PubMed ID: 22905585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells.
    Da Han ; Liu X; Zeng F; Qian J; Wu T; Zhan Z
    Sci Rep; 2012; 2():462. PubMed ID: 22708057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
    Fan L; Wang C; Di J; Chen M; Zheng J; Zhu B
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4941-5. PubMed ID: 22905555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and electrochemical characterization of LiMn0.6Fe0.4PO4/C cathode material via a modified-solid state reaction method.
    Kim HJ; Jin BS; Bae DS; Kim SB; Kim HS
    J Nanosci Nanotechnol; 2013 May; 13(5):3276-81. PubMed ID: 23858843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new anode for solid oxide fuel cells with enhanced OCV under methane operation.
    Ruiz-Morales JC; Canales-Vázquez J; Savaniu C; Marrero-López D; Núñez P; Zhou W; Irvine JT
    Phys Chem Chem Phys; 2007 Apr; 9(15):1821-30. PubMed ID: 17415494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. La0.3Sr0.2Mn0.1Zn0.4 oxide-Sm0.2Ce0.8O1.9 (LSMZ-SDC) nanocomposite cathode for low temperature SOFCs.
    Raza R; Abbas G; Liu Q; Patel I; Zhu B
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4994-7. PubMed ID: 22905565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct in situ probe of electrochemical processes in operating fuel cells.
    Nonnenmann SS; Kungas R; Vohs J; Bonnell DA
    ACS Nano; 2013 Jul; 7(7):6330-6. PubMed ID: 23782103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perspectives on the metallic interconnects for solid oxide fuel cells.
    Zhu WZ; Yan M
    J Zhejiang Univ Sci; 2004 Dec; 5(12):1471-503. PubMed ID: 15547954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering porous materials for fuel cell applications.
    Brandon NP; Brett DJ
    Philos Trans A Math Phys Eng Sci; 2006 Jan; 364(1838):147-59. PubMed ID: 18272457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.
    Kim J; Sengodan S; Kwon G; Ding D; Shin J; Liu M; Kim G
    ChemSusChem; 2014 Oct; 7(10):2811-5. PubMed ID: 25146887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotextured metal copper substrates as powerful and long-lasting fuel cell anodes.
    Filanovsky B; Granot E; Dirawi R; Presman I; Kuras I; Patolsky F
    Nano Lett; 2011 Apr; 11(4):1727-32. PubMed ID: 21438594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coprecipitation synthesis and characterization of La0.8Sr0.2Ga(0.8-x)Mg0.2Co(x)O2.8 for intermediate temperature solid oxide fuel cell electrolytes.
    Lee JG; Yoon HH
    J Nanosci Nanotechnol; 2012 Jan; 12(1):769-74. PubMed ID: 22524055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scalable nanostructured membranes for solid-oxide fuel cells.
    Tsuchiya M; Lai BK; Ramanathan S
    Nat Nanotechnol; 2011 May; 6(5):282-6. PubMed ID: 21460827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater.
    Liu XW; Sun XF; Huang YX; Sheng GP; Zhou K; Zeng RJ; Dong F; Wang SG; Xu AW; Tong ZH; Yu HQ
    Water Res; 2010 Oct; 44(18):5298-305. PubMed ID: 20638701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.
    Wang J; Bao W; Ma L; Tan G; Su Y; Chen S; Wu F; Lu J; Amine K
    ChemSusChem; 2015 Dec; 8(23):4073-80. PubMed ID: 26548901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanosized LiFePO4 cathode materials for lithium ion batteries.
    Gu HB; Jun DK; Park GC; Jin B; Jin EM
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3980-4. PubMed ID: 18047100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm(2) at 450 °C.
    An J; Kim YB; Park J; Gür TM; Prinz FB
    Nano Lett; 2013 Sep; 13(9):4551-5. PubMed ID: 23977845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xerogel based catalyst for improved cathode performance in microbial fuel cells.
    Thapa BS; Seetharaman S; Chetty R; Chandra TS
    Enzyme Microb Technol; 2019 May; 124():1-8. PubMed ID: 30797474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced anodes for high-temperature fuel cells.
    Atkinson A; Barnett S; Gorte RJ; Irvine JT; McEvoy AJ; Mogensen M; Singhal SC; Vohs J
    Nat Mater; 2004 Jan; 3(1):17-27. PubMed ID: 14704781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as high-capacity Li-ion battery electrode.
    Rangappa D; Murukanahally KD; Tomai T; Unemoto A; Honma I
    Nano Lett; 2012 Mar; 12(3):1146-51. PubMed ID: 22332722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.