These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 22905585)

  • 21. Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co(2-x)Fe(x)O(5+δ).
    Choi S; Yoo S; Kim J; Park S; Jun A; Sengodan S; Kim J; Shin J; Jeong HY; Choi Y; Kim G; Liu M
    Sci Rep; 2013; 3():2426. PubMed ID: 23945630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous NOx and hydrocarbon emissions control for lean-burn engines using low-temperature solid oxide fuel cell at open circuit.
    Huang TJ; Hsu SH; Wu CY
    Environ Sci Technol; 2012 Feb; 46(4):2324-9. PubMed ID: 22289082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced oxygen reduction activity and solid oxide fuel cell performance with a nanoparticles-loaded cathode.
    Zhang X; Liu L; Zhao Z; Tu B; Ou D; Cui D; Wei X; Chen X; Cheng M
    Nano Lett; 2015 Mar; 15(3):1703-9. PubMed ID: 25686380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Porous Co3O4/CuO composite assembled from nanosheets as high-performance anodes for lithium-ion batteries.
    Hao Q; Zhao D; Duan H; Xu C
    ChemSusChem; 2015 Apr; 8(8):1435-41. PubMed ID: 25828049
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An A-site-deficient perovskite offers high activity and stability for low-temperature solid-oxide fuel cells.
    Zhu Y; Chen ZG; Zhou W; Jiang S; Zou J; Shao Z
    ChemSusChem; 2013 Dec; 6(12):2249-54. PubMed ID: 24155098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional self-supported metal oxides for advanced energy storage.
    Ellis BL; Knauth P; Djenizian T
    Adv Mater; 2014 Jun; 26(21):3368-97. PubMed ID: 24700719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced graphene oxide supported highly porous V2O5 spheres as a high-power cathode material for lithium ion batteries.
    Rui X; Zhu J; Sim D; Xu C; Zeng Y; Hng HH; Lim TM; Yan Q
    Nanoscale; 2011 Nov; 3(11):4752-8. PubMed ID: 21989744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. La(0.4)Ba(0.6)Fe(0.8)Zn(0.2)O(3-delta) as cathode in solid oxide fuel cells for simultaneous NO reduction and electricity generation.
    Zhou R; Bu Y; Xu D; Zhong Q
    Environ Technol; 2014; 35(5-8):925-30. PubMed ID: 24645475
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced sulfur tolerance of nickel-based anodes for oxygen-ion conducting solid oxide fuel cells by incorporating a secondary water storing phase.
    Wang F; Wang W; Qu J; Zhong Y; Tade MO; Shao Z
    Environ Sci Technol; 2014 Oct; 48(20):12427-34. PubMed ID: 25229807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Al2O3 nano-filler on properties of glass-based seals for solid oxide fuel cells.
    Lee DB; Choi MJ; Park S; Lee JC
    J Nanosci Nanotechnol; 2013 Jan; 13(1):628-31. PubMed ID: 23646787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A highly stable anode, carbon-free, catalyst support based on tungsten trioxide nanoclusters for proton-exchange membrane fuel cells.
    Dou M; Hou M; Zhang H; Li G; Lu W; Wei Z; Shao Z; Yi B
    ChemSusChem; 2012 May; 5(5):945-51. PubMed ID: 22532479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase transition of a cobalt-free perovskite as a high-performance cathode for intermediate-temperature solid oxide fuel cells.
    Jiang S; Zhou W; Niu Y; Zhu Z; Shao Z
    ChemSusChem; 2012 Oct; 5(10):2023-31. PubMed ID: 22927086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalysis in solid oxide fuel cells.
    Gorte RJ; Vohs JM
    Annu Rev Chem Biomol Eng; 2011; 2():9-30. PubMed ID: 22432608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct soft-chemical synthesis of chalcogen-doped manganese oxide 1D nanostructures: influence of chalcogen doping on electrode performance.
    Kim TW; Park DH; Lim ST; Hwang SJ; Min BK; Choy JH
    Small; 2008 Apr; 4(4):507-14. PubMed ID: 18383575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tailoring the structural and microstructural properties of nanosized tantalum oxide for high temperature electrochemical gas sensors.
    Bonavita A; Di Bartolomeo E; Chevallier L; D'Ottavi C; Licoccia S; Traversa E
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4430-6. PubMed ID: 19916469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exfoliation and reassembly of cobalt oxide nanosheets into a reversible lithium-ion battery cathode.
    Compton OC; Abouimrane A; An Z; Palmeri MJ; Brinson LC; Amine K; Nguyen ST
    Small; 2012 Apr; 8(7):1110-6. PubMed ID: 22315165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Defect Chemistry, Electrical Properties, and Evaluation of New Oxides Sr
    Azcondo MT; Yuste M; Pérez-Flores JC; Muñoz-Gil D; García-Martín S; Muñoz-Noval A; Orench IP; García-Alvarado F; Amador U
    ChemSusChem; 2017 Jul; 10(14):2978-2989. PubMed ID: 28594114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemical performance of Li[Ni0.7Co0.1Mn0.2]O2 cathode materials using a co-precipitation method.
    Kim JM; Jin BS; Koo HJ; Choi JM; Kim HS
    J Nanosci Nanotechnol; 2013 May; 13(5):3303-6. PubMed ID: 23858848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed fuel strategy for carbon deposition mitigation in solid oxide fuel cells at intermediate temperatures.
    Su C; Chen Y; Wang W; Ran R; Shao Z; Diniz da Costa JC; Liu S
    Environ Sci Technol; 2014 Jun; 48(12):7122-7. PubMed ID: 24856957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effectiveness of phase- and morphology-controlled MnO
    Valipour A; Hamnabard N; Meshkati SMH; Pakan M; Ahn YH
    Dalton Trans; 2019 Apr; 48(16):5429-5443. PubMed ID: 30951077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.