BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 22906166)

  • 21. A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse.
    Darrow EM; Chadwick BP
    Nucleic Acids Res; 2014 Jun; 42(10):6421-35. PubMed ID: 24753417
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Small RNA expression from the human macrosatellite DXZ4.
    Pohlers M; Calabrese JM; Magnuson T
    G3 (Bethesda); 2014 Aug; 4(10):1981-9. PubMed ID: 25147189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences.
    Arpanahi A; Brinkworth M; Iles D; Krawetz SA; Paradowska A; Platts AE; Saida M; Steger K; Tedder P; Miller D
    Genome Res; 2009 Aug; 19(8):1338-49. PubMed ID: 19584098
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CTCF: master weaver of the genome.
    Phillips JE; Corces VG
    Cell; 2009 Jun; 137(7):1194-211. PubMed ID: 19563753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Forged by
    Bansal P; Kondaveeti Y; Pinter SF
    Front Cell Dev Biol; 2019; 7():328. PubMed ID: 32076600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bipartite structure of the inactive mouse X chromosome.
    Deng X; Ma W; Ramani V; Hill A; Yang F; Ay F; Berletch JB; Blau CA; Shendure J; Duan Z; Noble WS; Disteche CM
    Genome Biol; 2015 Aug; 16(1):152. PubMed ID: 26248554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of constitutive CTCF/cohesin loci: a possible role in establishing topological domains in mammalian genomes.
    Li Y; Huang W; Niu L; Umbach DM; Covo S; Li L
    BMC Genomics; 2013 Aug; 14():553. PubMed ID: 23945083
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 5meCpG epigenetic marks neighboring a primate-conserved core promoter short tandem repeat indicate X-chromosome inactivation.
    Machado FB; Machado FB; Faria MA; Lovatel VL; Alves da Silva AF; Radic CP; De Brasi CD; Rios ÁF; de Sousa Lopes SM; da Silveira LS; Ruiz-Miranda CR; Ramos ES; Medina-Acosta E
    PLoS One; 2014; 9(7):e103714. PubMed ID: 25078280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human gamma-satellite DNA maintains open chromatin structure and protects a transgene from epigenetic silencing.
    Kim JH; Ebersole T; Kouprina N; Noskov VN; Ohzeki J; Masumoto H; Mravinac B; Sullivan BA; Pavlicek A; Dovat S; Pack SD; Kwon YW; Flanagan PT; Loukinov D; Lobanenkov V; Larionov V
    Genome Res; 2009 Apr; 19(4):533-44. PubMed ID: 19141594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid Macrosatellite Evolution Promotes X-Linked Hybrid Male Sterility in a Feline Interspecies Cross.
    Bredemeyer KR; Seabury CM; Stickney MJ; McCarrey JR; vonHoldt BM; Murphy WJ
    Mol Biol Evol; 2021 Dec; 38(12):5588-5609. PubMed ID: 34519828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus.
    Barutcu AR; Maass PG; Lewandowski JP; Weiner CL; Rinn JL
    Nat Commun; 2018 Apr; 9(1):1444. PubMed ID: 29654311
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Co-binding by YY1 identifies the transcriptionally active, highly conserved set of CTCF-bound regions in primate genomes.
    Schwalie PC; Ward MC; Cain CE; Faure AJ; Gilad Y; Odom DT; Flicek P
    Genome Biol; 2013 Dec; 14(12):R148. PubMed ID: 24380390
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of chromatin at structurally abnormal inactive X chromosomes reveals potential evidence of a rare hybrid active and inactive isodicentric X chromosome.
    Chadwick BP
    Chromosome Res; 2020 Jun; 28(2):155-169. PubMed ID: 31776830
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Macrosatellite epigenetics: the two faces of DXZ4 and D4Z4.
    Chadwick BP
    Chromosoma; 2009 Dec; 118(6):675-81. PubMed ID: 19690880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromatin Domain Organization of the TCRb Locus and Its Perturbation by Ectopic CTCF Binding.
    Rawat P; Jalan M; Sadhu A; Kanaujia A; Srivastava M
    Mol Cell Biol; 2017 May; 37(9):. PubMed ID: 28137913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epigenetic profile of the euchromatic region of human Y chromosome.
    Singh NP; Madabhushi SR; Srivastava S; Senthilkumar R; Neeraja C; Khosla S; Mishra RK
    Nucleic Acids Res; 2011 May; 39(9):3594-606. PubMed ID: 21252296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonallelic transcriptional roles of CTCF and cohesins at imprinted loci.
    Lin S; Ferguson-Smith AC; Schultz RM; Bartolomei MS
    Mol Cell Biol; 2011 Aug; 31(15):3094-104. PubMed ID: 21628529
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci.
    Loguercio S; Barajas-Mora EM; Shih HY; Krangel MS; Feeney AJ
    Front Immunol; 2018; 9():425. PubMed ID: 29593713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of a Ctcf cofactor, Yy1, for the X chromosome binary switch.
    Donohoe ME; Zhang LF; Xu N; Shi Y; Lee JT
    Mol Cell; 2007 Jan; 25(1):43-56. PubMed ID: 17218270
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes.
    Filippova GN; Fagerlie S; Klenova EM; Myers C; Dehner Y; Goodwin G; Neiman PE; Collins SJ; Lobanenkov VV
    Mol Cell Biol; 1996 Jun; 16(6):2802-13. PubMed ID: 8649389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.