These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22906208)

  • 1. Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced Darkfield microscopy.
    Badireddy AR; Wiesner MR; Liu J
    Environ Sci Technol; 2012 Sep; 46(18):10081-8. PubMed ID: 22906208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry.
    Yang Y; Long CL; Li HP; Wang Q; Yang ZG
    Sci Total Environ; 2016 Sep; 563-564():996-1007. PubMed ID: 26895948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications.
    Fairbairn N; Christofidou A; Kanaras AG; Newman TA; Muskens OL
    Phys Chem Chem Phys; 2013 Mar; 15(12):4163-8. PubMed ID: 23183927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid determination of plasmonic nanoparticle agglomeration status in blood.
    Jenkins SV; Qu H; Mudalige T; Ingle TM; Wang R; Wang F; Howard PC; Chen J; Zhang Y
    Biomaterials; 2015 May; 51():226-237. PubMed ID: 25771013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward full spectrum speciation of silver nanoparticles and ionic silver by on-line coupling of hollow fiber flow field-flow fractionation and minicolumn concentration with multiple detectors.
    Tan ZQ; Liu JF; Guo XR; Yin YG; Byeon SK; Moon MH; Jiang GB
    Anal Chem; 2015 Aug; 87(16):8441-7. PubMed ID: 26222150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring the Fate and Transformation of Silver Nanoparticles in Natural Waters.
    Furtado LM; Bundschuh M; Metcalfe CD
    Bull Environ Contam Toxicol; 2016 Oct; 97(4):449-55. PubMed ID: 27437947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles.
    Loeschner K; Navratilova J; Legros S; Wagner S; Grombe R; Snell J; von der Kammer F; Larsen EH
    J Chromatogr A; 2013 Jan; 1272():116-25. PubMed ID: 23261297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of total silver and silver nanoparticle extraction from medical devices.
    Sussman EM; Jayanti P; Dair BJ; Casey BJ
    Food Chem Toxicol; 2015 Nov; 85():10-9. PubMed ID: 26282371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).
    Guo H; Zhang Z; Xing B; Mukherjee A; Musante C; White JC; He L
    Environ Sci Technol; 2015 Apr; 49(7):4317-24. PubMed ID: 25775209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced Raman scattering detection of silver nanoparticles in environmental and biological samples.
    Guo H; Xing B; Hamlet LC; Chica A; He L
    Sci Total Environ; 2016 Jun; 554-555():246-52. PubMed ID: 26956173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow-fiber flow field-flow fractionation and multi-angle light scattering investigation of the size, shape and metal-release of silver nanoparticles in aqueous medium for nano-risk assessment.
    Marassi V; Casolari S; Roda B; Zattoni A; Reschiglian P; Panzavolta S; Tofail SA; Ortelli S; Delpivo C; Blosi M; Costa AL
    J Pharm Biomed Anal; 2015 Mar; 106():92-9. PubMed ID: 25698553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles.
    Choi J; Reipa V; Hitchins VM; Goering PL; Malinauskas RA
    Toxicol Sci; 2011 Sep; 123(1):133-43. PubMed ID: 21652737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of three analytical methods to measure the size of silver nanoparticles in real environmental water and wastewater samples.
    Chang YJ; Shih YH; Su CH; Ho HC
    J Hazard Mater; 2017 Jan; 322(Pt A):95-104. PubMed ID: 27041441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of large extracellular silver nanoparticle rings observed during mitosis using darkfield microscopy.
    Zucker RM; Ortenzio J; Degn LL; Boyes WK
    PLoS One; 2020; 15(12):e0240268. PubMed ID: 33259485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium.
    Neethu S; Midhun SJ; Sunil MA; Soumya S; Radhakrishnan EK; Jyothis M
    J Photochem Photobiol B; 2018 Mar; 180():175-185. PubMed ID: 29453129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-dimensional nanoparticle characterization method combining differential mobility analyzer and single-particle inductively coupled plasma-mass spectrometry with an atomizer-enabled sample introduction (ATM-DMA-spICP-MS): Toward the analysis of heteroaggregated nanoparticles in wastewater.
    Hsieh YC; Lin YP; Hsiao TC; Hou WC
    Sci Total Environ; 2022 Sep; 838(Pt 3):156444. PubMed ID: 35660613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection and characterization of silver nanoparticles in chicken meat by asymmetric flow field flow fractionation with detection by conventional or single particle ICP-MS.
    Loeschner K; Navratilova J; Købler C; Mølhave K; Wagner S; von der Kammer F; Larsen EH
    Anal Bioanal Chem; 2013 Oct; 405(25):8185-95. PubMed ID: 23887279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation.
    Shannahan JH; Podila R; Brown JM
    Int J Nanomedicine; 2015; 10():6509-21. PubMed ID: 26508856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag nanoparticles coated SWCNT with surface enhanced Raman scattering (SERS) signals.
    Chen Z; Liu R; Wang Y; Zhu H; Sun Z; Zuo T; Chang X; Zhao F; Xing G; Yuan H; Xiang J; Gao X
    J Nanosci Nanotechnol; 2010 Dec; 10(12):8538-43. PubMed ID: 21121363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.