These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22906360)

  • 1. Introducing D-amino acid or simple glycoside into small peptides to enable supramolecular hydrogelators to resist proteolysis.
    Li X; Du X; Li J; Gao Y; Pan Y; Shi J; Zhou N; Xu B
    Langmuir; 2012 Sep; 28(37):13512-7. PubMed ID: 22906360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional, biocompatible supramolecular hydrogelators consist only of nucleobase, amino acid, and glycoside.
    Li X; Kuang Y; Shi J; Gao Y; Lin HC; Xu B
    J Am Chem Soc; 2011 Nov; 133(43):17513-8. PubMed ID: 21928792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D-amino acids modulate the cellular response of enzymatic-instructed supramolecular nanofibers of small peptides.
    Shi J; Du X; Yuan D; Zhou J; Zhou N; Huang Y; Xu B
    Biomacromolecules; 2014 Oct; 15(10):3559-68. PubMed ID: 25230147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.
    Du X; Zhou J; Shi J; Xu B
    Chem Rev; 2015 Dec; 115(24):13165-307. PubMed ID: 26646318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy.
    Li J; Gao Y; Kuang Y; Shi J; Du X; Zhou J; Wang H; Yang Z; Xu B
    J Am Chem Soc; 2013 Jul; 135(26):9907-14. PubMed ID: 23742714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular hydrogels made of basic biological building blocks.
    Du X; Zhou J; Xu B
    Chem Asian J; 2014 Jun; 9(6):1446-72. PubMed ID: 24623474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide based hydrogels for cancer drug release: modulation of stiffness, drug release and proteolytic stability of hydrogels by incorporating d-amino acid residue(s).
    Basu K; Baral A; Basak S; Dehsorkhi A; Nanda J; Bhunia D; Ghosh S; Castelletto V; Hamley IW; Banerjee A
    Chem Commun (Camb); 2016 Apr; 52(28):5045-8. PubMed ID: 26987440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydropeptide Supramolecular Hydrogels and Nanostructures as Potential Peptidomimetic Biomedical Materials.
    Jervis PJ; Amorim C; Pereira T; Martins JA; Ferreira PMT
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33802425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed α/β-Peptides as a Class of Short Amphipathic Peptide Hydrogelators with Enhanced Proteolytic Stability.
    Mangelschots J; Bibian M; Gardiner J; Waddington L; Van Wanseele Y; Van Eeckhaut A; Acevedo MM; Van Mele B; Madder A; Hoogenboom R; Ballet S
    Biomacromolecules; 2016 Feb; 17(2):437-45. PubMed ID: 26741458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino Acids and Peptide-Based Supramolecular Hydrogels for Three-Dimensional Cell Culture.
    Dou XQ; Feng CL
    Adv Mater; 2017 Apr; 29(16):. PubMed ID: 28112836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixing biomimetic heterodimers of nucleopeptides to generate biocompatible and biostable supramolecular hydrogels.
    Yuan D; Du X; Shi J; Zhou N; Zhou J; Xu B
    Angew Chem Int Ed Engl; 2015 May; 54(19):5705-8. PubMed ID: 25783774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging-Based Study on Control Factors over Self-Sorting of Supramolecular Nanofibers Formed from Peptide- and Lipid-type Hydrogelators.
    Kubota R; Liu S; Shigemitsu H; Nakamura K; Tanaka W; Ikeda M; Hamachi I
    Bioconjug Chem; 2018 Jun; 29(6):2058-2067. PubMed ID: 29742348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amide-triazole isosteric substitution for tuning self-assembly and incorporating new functions into soft supramolecular materials.
    Bachl J; Mayr J; Sayago FJ; Cativiela C; Díaz Díaz D
    Chem Commun (Camb); 2015 Mar; 51(25):5294-7. PubMed ID: 25502929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular hydrogelators of peptoid-peptide conjugates with superior stability against enzyme digestion.
    Wu Z; Tan M; Chen X; Yang Z; Wang L
    Nanoscale; 2012 Jun; 4(12):3644-6. PubMed ID: 22581113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID).
    Li J; Kuang Y; Gao Y; Du X; Shi J; Xu B
    J Am Chem Soc; 2013 Jan; 135(2):542-5. PubMed ID: 23136972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels.
    Zhang Y; Kuang Y; Gao Y; Xu B
    Langmuir; 2011 Jan; 27(2):529-37. PubMed ID: 20608718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-based and polypeptide-based hydrogels for drug delivery and tissue engineering.
    Altunbas A; Pochan DJ
    Top Curr Chem; 2012; 310():135-67. PubMed ID: 21809190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular hydrogels based on short peptides linked with conformational switch.
    Huang Y; Qiu Z; Xu Y; Shi J; Lin H; Zhang Y
    Org Biomol Chem; 2011 Apr; 9(7):2149-55. PubMed ID: 21298187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular hydrogels formed by the conjugates of nucleobases, Arg-Gly-Asp (RGD) peptides, and glucosamine.
    Li X; Du X; Gao Y; Shi J; Kuang Y; Xu B
    Soft Matter; 2012 Jul; 8(28):7402-7407. PubMed ID: 22844343
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.