These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 22906573)

  • 1. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols.
    Fröhlich E; Bonstingl G; Höfler A; Meindl C; Leitinger G; Pieber TR; Roblegg E
    Toxicol In Vitro; 2013 Feb; 27(1):409-17. PubMed ID: 22906573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.
    Polk WW; Sharma M; Sayes CM; Hotchkiss JA; Clippinger AJ
    Part Fibre Toxicol; 2016 Apr; 13():20. PubMed ID: 27108236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of long-term effects of nanoparticles in a microcarrier cell culture system.
    Mrakovcic M; Absenger M; Riedl R; Smole C; Roblegg E; Fröhlich LF; Fröhlich E
    PLoS One; 2013; 8(2):e56791. PubMed ID: 23457616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL®Cloud cell exposure systems.
    Ding Y; Weindl P; Lenz AG; Mayer P; Krebs T; Schmid O
    Part Fibre Toxicol; 2020 Sep; 17(1):44. PubMed ID: 32938469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles.
    Endes C; Schmid O; Kinnear C; Mueller S; Camarero-Espinosa S; Vanhecke D; Foster EJ; Petri-Fink A; Rothen-Rutishauser B; Weder C; Clift MJ
    Part Fibre Toxicol; 2014 Sep; 11():40. PubMed ID: 25245637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modular air-liquid interface aerosol exposure system (MALIES) to study toxicity of nanoparticle aerosols in 3D-cultured A549 cells in vitro.
    Küstner MJ; Eckstein D; Brauer D; Mai P; Hampl J; Weise F; Schuhmann B; Hause G; Glahn F; Foth H; Schober A
    Arch Toxicol; 2024 Apr; 98(4):1061-1080. PubMed ID: 38340173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke.
    Ihantola T; Di Bucchianico S; Happo M; Ihalainen M; Uski O; Bauer S; Kuuspalo K; Sippula O; Tissari J; Oeder S; Hartikainen A; Rönkkö TJ; Martikainen MV; Huttunen K; Vartiainen P; Suhonen H; Kortelainen M; Lamberg H; Leskinen A; Sklorz M; Michalke B; Dilger M; Weiss C; Dittmar G; Beckers J; Irmler M; Buters J; Candeias J; Czech H; Yli-Pirilä P; Abbaszade G; Jakobi G; Orasche J; Schnelle-Kreis J; Kanashova T; Karg E; Streibel T; Passig J; Hakkarainen H; Jokiniemi J; Zimmermann R; Hirvonen MR; Jalava PI
    Part Fibre Toxicol; 2020 Jun; 17(1):27. PubMed ID: 32539833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.
    Loret T; Peyret E; Dubreuil M; Aguerre-Chariol O; Bressot C; le Bihan O; Amodeo T; Trouiller B; Braun A; Egles C; Lacroix G
    Part Fibre Toxicol; 2016 Nov; 13(1):58. PubMed ID: 27919268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inter-laboratory effort to harmonize the cell-delivered in vitro dose of aerosolized materials.
    Bannuscher A; Schmid O; Drasler B; Rohrbasser A; Braakhuis HM; Meldrum K; Zwart EP; Gremmer ER; Birk B; Rissel M; Landsiedel R; Moschini E; Evans SJ; Kumar P; Orak S; Doryab A; Erdem JS; Serchi T; Vandebriel RJ; Cassee FR; Doak SH; Petri-Fink A; Zienolddiny S; Clift MJD; Rothen-Rutishauser B
    NanoImpact; 2022 Oct; 28():100439. PubMed ID: 36402283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface.
    Xie Y; Williams NG; Tolic A; Chrisler WB; Teeguarden JG; Maddux BL; Pounds JG; Laskin A; Orr G
    Toxicol Sci; 2012 Feb; 125(2):450-61. PubMed ID: 21964423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methodological considerations when conducting in vitro, air-liquid interface exposures to engineered nanoparticle aerosols.
    Secondo LE; Liu NJ; Lewinski NA
    Crit Rev Toxicol; 2017 Mar; 47(3):225-262. PubMed ID: 27648750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica nanoparticles are less toxic to human lung cells when deposited at the air-liquid interface compared to conventional submerged exposure.
    Panas A; Comouth A; Saathoff H; Leisner T; Al-Rawi M; Simon M; Seemann G; Dössel O; Mülhopt S; Paur HR; Fritsch-Decker S; Weiss C; Diabaté S
    Beilstein J Nanotechnol; 2014; 5():1590-1602. PubMed ID: 25247141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Vitrocell® 24/48 aerosol exposure system for its use in exposures to liquid aerosols.
    Steiner S; Majeed S; Kratzer G; Vuillaume G; Hoeng J; Frentzel S
    Toxicol In Vitro; 2017 Aug; 42():263-272. PubMed ID: 28457873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in cytotoxicity of lung epithelial cells exposed to titanium dioxide nanofibers and nanoparticles: Comparison of air-liquid interface and submerged cell cultures.
    Medina-Reyes EI; Delgado-Buenrostro NL; Leseman DL; Déciga-Alcaraz A; He R; Gremmer ER; Fokkens PHB; Flores-Flores JO; Cassee FR; Chirino YI
    Toxicol In Vitro; 2020 Jun; 65():104798. PubMed ID: 32084520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited.
    Raemy DO; Limbach LK; Rothen-Rutishauser B; Grass RN; Gehr P; Birbaum K; Brandenberger C; Günther D; Stark WJ
    Eur J Pharm Biopharm; 2011 Apr; 77(3):368-75. PubMed ID: 21118721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-Liquid Interface Cell Exposures to Nanoparticle Aerosols.
    Lewinski NA; Liu NJ; Asimakopoulou A; Papaioannou E; Konstandopoulos A; Riediker M
    Methods Mol Biol; 2017; 1570():301-313. PubMed ID: 28238146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytotoxity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing.
    Fröhlich E; Meindl C; Roblegg E; Griesbacher A; Pieber TR
    Nanotoxicology; 2012 Jun; 6(4):424-39. PubMed ID: 21627401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular dose of partly soluble Cu particle aerosols at the air-liquid interface using an in vitro lung cell exposure system.
    Elihn K; Cronholm P; Karlsson HL; Midander K; Odnevall Wallinder I; Möller L
    J Aerosol Med Pulm Drug Deliv; 2013 Apr; 26(2):84-93. PubMed ID: 22889118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A nanoparticle dispersion method for in vitro and in vivo nanotoxicity study.
    Kim SC; Chen DR; Qi C; Gelein RM; Finkelstein JN; Elder A; Bentley K; Oberdörster G; Pui DY
    Nanotoxicology; 2010 Mar; 4(1):42-51. PubMed ID: 20795901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro placental model optimization for nanoparticle transport studies.
    Cartwright L; Poulsen MS; Nielsen HM; Pojana G; Knudsen LE; Saunders M; Rytting E
    Int J Nanomedicine; 2012; 7():497-510. PubMed ID: 22334780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.