BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 22906721)

  • 21. Temporal specification of neural stem cells: insights from Drosophila neuroblasts.
    Maurange C
    Curr Top Dev Biol; 2012; 98():199-228. PubMed ID: 22305164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anterior-Posterior Gradient in Neural Stem and Daughter Cell Proliferation Governed by Spatial and Temporal Hox Control.
    Monedero Cobeta I; Salmani BY; Thor S
    Curr Biol; 2017 Apr; 27(8):1161-1172. PubMed ID: 28392108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Progenitor properties of symmetrically dividing Drosophila neuroblasts during embryonic and larval development.
    Kitajima A; Fuse N; Isshiki T; Matsuzaki F
    Dev Biol; 2010 Nov; 347(1):9-23. PubMed ID: 20599889
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Miranda directs Prospero to a daughter cell during Drosophila asymmetric divisions.
    Ikeshima-Kataoka H; Skeath JB; Nabeshima Y; Doe CQ; Matsuzaki F
    Nature; 1997 Dec; 390(6660):625-9. PubMed ID: 9403694
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroblast-specific open chromatin allows the temporal transcription factor, Hunchback, to bind neuroblast-specific loci.
    Sen SQ; Chanchani S; Southall TD; Doe CQ
    Elife; 2019 Jan; 8():. PubMed ID: 30694180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A new role of Klumpfuss in establishing cell fate during the GMC asymmetric cell division.
    Gabilondo H; Losada-Pérez M; Monedero I; Torres-Herráez A; Molina I; Torroja L; Benito-Sipos J
    Cell Tissue Res; 2014 Nov; 358(2):621-6. PubMed ID: 25129108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drosophila MAGE controls neural precursor proliferation in postembryonic neurogenesis.
    Nishimura I; Sakoda JY; Yoshikawa K
    Neuroscience; 2008 Jun; 154(2):572-81. PubMed ID: 18479827
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragile X Protein is required for inhibition of insulin signaling and regulates glial-dependent neuroblast reactivation in the developing brain.
    Callan MA; Clements N; Ahrendt N; Zarnescu DC
    Brain Res; 2012 Jun; 1462():151-61. PubMed ID: 22513101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The transcription factor Nerfin-1 prevents reversion of neurons into neural stem cells.
    Froldi F; Szuperak M; Weng CF; Shi W; Papenfuss AT; Cheng LY
    Genes Dev; 2015 Jan; 29(2):129-43. PubMed ID: 25593306
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A primary cell culture of Drosophila postembryonic larval neuroblasts to study cell cycle and asymmetric division.
    Ceron J; Tejedor FJ; Moya F
    Eur J Cell Biol; 2006 Jun; 85(6):567-75. PubMed ID: 16621131
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNAi living-cell microarrays for loss-of-function screens in Drosophila melanogaster cells.
    Wheeler DB; Bailey SN; Guertin DA; Carpenter AE; Higgins CO; Sabatini DM
    Nat Methods; 2004 Nov; 1(2):127-32. PubMed ID: 15782175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Drosophila neural stem cells in brain development and tumor formation.
    Jiang Y; Reichert H
    J Neurogenet; 2014; 28(3-4):181-9. PubMed ID: 24766377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in Drosophila stem cell biology.
    Pearson J; López-Onieva L; Rojas-Ríos P; González-Reyes A
    Int J Dev Biol; 2009; 53(8-10):1329-39. PubMed ID: 19247935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells.
    Betschinger J; Mechtler K; Knoblich JA
    Cell; 2006 Mar; 124(6):1241-53. PubMed ID: 16564014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome-wide RNAi screen identifies networks involved in intestinal stem cell regulation in Drosophila.
    Zeng X; Han L; Singh SR; Liu H; Neumüller RA; Yan D; Hu Y; Liu Y; Liu W; Lin X; Hou SX
    Cell Rep; 2015 Feb; 10(7):1226-38. PubMed ID: 25704823
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors.
    Tsuji T; Hasegawa E; Isshiki T
    Development; 2008 Dec; 135(23):3859-69. PubMed ID: 18948419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor buttonhead.
    Komori H; Xiao Q; Janssens DH; Dou Y; Lee CY
    Elife; 2014 Oct; 3():. PubMed ID: 25285447
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Golgi apparatus: lessons from Drosophila.
    Kondylis V; Rabouille C
    FEBS Lett; 2009 Dec; 583(23):3827-38. PubMed ID: 19800333
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cortical aPKC kinase activity distinguishes neural stem cells from progenitor cells by ensuring asymmetric segregation of Numb.
    Haenfler JM; Kuang C; Lee CY
    Dev Biol; 2012 May; 365(1):219-28. PubMed ID: 22394487
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pvr receptor tyrosine kinase signaling promotes post-embryonic morphogenesis, and survival of glia and neural progenitor cells in
    Read RD
    Development; 2018 Dec; 145(23):. PubMed ID: 30327326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.