BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2290680)

  • 1. [Theoretical and clinical bases of the method of osteosynthesis by screws in oblique and spiral fractures of the tibia].
    Tkachenko SS; Erokhov AN; Mel'nikov BE
    Ortop Travmatol Protez; 1990 Jul; (7):5-9. PubMed ID: 2290680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal orientation of transfixation screws across oblique fractures lines.
    Schlicke LH; Panjabi MM; White AA
    Clin Orthop Relat Res; 1979 Sep; (143):271-7. PubMed ID: 509833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Biomechanical studies of the role of the interfragmentary traction screw in plate osteosynthesis exemplified by a short oblique tibial shaft fracture].
    Hopf T; Harnroongroi T
    Aktuelle Traumatol; 1986 Apr; 16(2):60-6. PubMed ID: 2871713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Biomechanical aspects of osteosynthesis with the bone screws in closed oblique and spiral fractures of long tubular bones].
    Saakian TsA
    Ortop Travmatol Protez; 1979 Jun; (6):10-3. PubMed ID: 471446
    [No Abstract]   [Full Text] [Related]  

  • 5. Intramedullary stabilization of extraarticular proximal tibial fractures: a biomechanical comparison of intramedullary and extramedullary implants including a new proximal tibia nail (PTN).
    Hansen M; Mehler D; Hessmann MH; Blum J; Rommens PM
    J Orthop Trauma; 2007; 21(10):701-9. PubMed ID: 17986887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Stability studies of a ventral external fixation unit of the tibia. I. Axial loading].
    Warmbold M; Gotzen L; Schlenzka R
    Unfallheilkunde; 1983 Apr; 86(4):182-6. PubMed ID: 6857856
    [No Abstract]   [Full Text] [Related]  

  • 7. Rigidity of pure lag-screw fixation as a function of screw inclination in an in vitro spiral osteotomy.
    Johner R; Joerger K; Cordey J; Perren SM
    Clin Orthop Relat Res; 1983 Sep; (178):74-9. PubMed ID: 6883871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micromotion at the fracture site after tibial nailing with four unreamed small-diameter nails--a biomechanical study using a distal tibia fracture model.
    Schüller M; Weninger P; Tschegg E; Jamek M; Redl H; Stanzl-Tschegg S
    J Trauma; 2009 May; 66(5):1391-7. PubMed ID: 19430244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Compression osteosynthesis of oblique and spiral fractures of the tibia].
    Frenkel H; Qaddorh B
    Beitr Orthop Traumatol; 1986 May; 33(5):259-61. PubMed ID: 3741363
    [No Abstract]   [Full Text] [Related]  

  • 10. Factors influencing interlocking screw failure in unreamed small diameter nails--a biomechanical study using a distal tibia fracture model.
    Weninger P; Schueller M; Jamek M; Stanzl-Tschegg S; Redl H; Tschegg EK
    Clin Biomech (Bristol, Avon); 2009 May; 24(4):379-84. PubMed ID: 19231049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of screw type on the fixation of depressed fragments in tibial plateau fractures.
    Cooper HJ; Kummer FJ; Egol KA; Koval KJ
    Bull Hosp Jt Dis; 2001-2002; 60(2):72-5. PubMed ID: 12003357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Osteosynthesis with screws of closed fractures of the long bones].
    Nikitin GD; Magomedaliev DI; Rak AV; Shokhman IaD
    Vestn Khir Im I I Grek; 1986 Feb; 136(2):72-5. PubMed ID: 3705348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical evaluation of fracture fixation augmented with tricalcium phosphate bone cement in a porous osteoporotic cancellous bone model.
    Collinge C; Merk B; Lautenschlager EP
    J Orthop Trauma; 2007 Feb; 21(2):124-8. PubMed ID: 17304068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suture versus screw fixation of displaced tibial eminence fractures: a biomechanical comparison.
    Bong MR; Romero A; Kubiak E; Iesaka K; Heywood CS; Kummer F; Rosen J; Jazrawi L
    Arthroscopy; 2005 Oct; 21(10):1172-6. PubMed ID: 16226643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Theoretical and experimental studies on the technology of external bone fracture stabilization].
    Egkher E
    Wien Klin Wochenschr Suppl; 1985; 158():1-19. PubMed ID: 3857791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A biomechanical study comparing a raft of 3.5 mm cortical screws with 6.5 mm cancellous screws in depressed tibial plateau fractures.
    Patil S; Mahon A; Green S; McMurtry I; Port A
    Knee; 2006 Jun; 13(3):231-5. PubMed ID: 16647262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of bone quality on the strength of internal and external fixation of tibial plateau fractures.
    Ali AM; Saleh M; Eastell R; Wigderowitz CA; Rigby AS; Yang L
    J Orthop Res; 2006 Nov; 24(11):2080-6. PubMed ID: 16944472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a variable stiffness external fixation system for stabilization of segmental defects of the tibia.
    Tencer AF; Claudi B; Pearce S; Bucholz RW; Johnson KD
    J Orthop Res; 1984; 1(4):395-404. PubMed ID: 6491789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical comparison of bicortical versus unicortical screw placement of proximal tibia locking plates: a cadaveric model.
    Dougherty PJ; Kim DG; Meisterling S; Wybo C; Yeni Y
    J Orthop Trauma; 2008 Jul; 22(6):399-403. PubMed ID: 18594304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fixation of diaphyseal fractures with a segmental defect: a biomechanical comparison of locked and conventional plating techniques.
    Fulkerson E; Egol KA; Kubiak EN; Liporace F; Kummer FJ; Koval KJ
    J Trauma; 2006 Apr; 60(4):830-5. PubMed ID: 16612304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.