BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

670 related articles for article (PubMed ID: 22906866)

  • 1. Thin films and assemblies of photosensitive membrane proteins and colloidal nanocrystals for engineering of hybrid materials with advanced properties.
    Zaitsev SY; Solovyeva DO; Nabiev I
    Adv Colloid Interface Sci; 2012 Nov; 183-184():14-29. PubMed ID: 22906866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled influence of quantum dots on purple membranes at interfaces.
    Zaitsev SY; Lukashev EP; Solovyeva DO; Chistyakov AA; Oleinikov VA
    Colloids Surf B Biointerfaces; 2014 May; 117():248-51. PubMed ID: 24657610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.
    Reiss P; Couderc E; De Girolamo J; Pron A
    Nanoscale; 2011 Feb; 3(2):446-89. PubMed ID: 21152569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance energy transfer improves the biological function of bacteriorhodopsin within a hybrid material built from purple membranes and semiconductor quantum dots.
    Rakovich A; Sukhanova A; Bouchonville N; Lukashev E; Oleinikov V; Artemyev M; Lesnyak V; Gaponik N; Molinari M; Troyon M; Rakovich YP; Donegan JF; Nabiev I
    Nano Lett; 2010 Jul; 10(7):2640-8. PubMed ID: 20521831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new class of purple membrane variants for the construction of highly oriented membrane assemblies on the basis of noncovalent interactions.
    Baumann RP; Busch AP; Heidel B; Hampp N
    J Phys Chem B; 2012 Apr; 116(14):4134-40. PubMed ID: 22420766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remarkably enhanced photoelectrical efficiency of bacteriorhodopsin in quantum dot - Purple membrane complexes under two-photon excitation.
    Krivenkov V; Samokhvalov P; Nabiev I
    Biosens Bioelectron; 2019 Jul; 137():117-122. PubMed ID: 31085400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-nano hybrid materials based on bacteriorhodopsin: Potential applications and future strategies.
    Mahyad B; Janfaza S; Hosseini ES
    Adv Colloid Interface Sci; 2015 Nov; 225():194-202. PubMed ID: 26506028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of oriented poly-L-lysine/bacteriorhodopsin-embedded purple membrane multilayer structure for enhanced photoelectric response.
    Li R; Cui X; Hu W; Lu Z; Li CM
    J Colloid Interface Sci; 2010 Apr; 344(1):150-7. PubMed ID: 20056227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the efficiency of solution-processed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment.
    Zhou R; Stalder R; Xie D; Cao W; Zheng Y; Yang Y; Plaisant M; Holloway PH; Schanze KS; Reynolds JR; Xue J
    ACS Nano; 2013 Jun; 7(6):4846-54. PubMed ID: 23668301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical and electric signals from dried oriented purple membrane of bacteriorhodopsins.
    Tóth-Boconádi R; Dér A; Keszthelyi L
    Bioelectrochemistry; 2011 Apr; 81(1):17-21. PubMed ID: 21236739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented assembly of bacteriorhodopsin on ZnO nanostructured electrode for enhanced photocurrent generation.
    Molaeirad A; Rezaeian N
    Biotechnol Appl Biochem; 2015; 62(4):489-93. PubMed ID: 25223865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes in bacteriorhodopsin caused by two-photon-induced photobleaching.
    Rhinow D; Imhof M; Chizhik I; Baumann RP; Hampp N
    J Phys Chem B; 2012 Jun; 116(25):7455-62. PubMed ID: 22512248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content.
    Rhinow D; Hampp N
    J Phys Chem B; 2010 Jan; 114(1):549-56. PubMed ID: 19908872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Free Synthetic Biology Chassis for Nanocatalytic Photon-to-Hydrogen Conversion.
    Wang P; Chang AY; Novosad V; Chupin VV; Schaller RD; Rozhkova EA
    ACS Nano; 2017 Jul; 11(7):6739-6745. PubMed ID: 28602073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of optical protein with electronics for bio-nanosensors.
    Anton C; Walczak K; Lueking D; Friedrich C
    J Nanosci Nanotechnol; 2010 Sep; 10(9):6104-9. PubMed ID: 21133156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomechanical properties of proteins and membranes depend on loading rate and electrostatic interactions.
    Medalsy ID; Müller DJ
    ACS Nano; 2013 Mar; 7(3):2642-50. PubMed ID: 23442147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic transduction of proton translocations in nanoassembled lamellae of bacteriorhodopsin.
    Palazzo G; Magliulo M; Mallardi A; Angione MD; Gobeljic D; Scamarcio G; Fratini E; Ridi F; Torsi L
    ACS Nano; 2014 Aug; 8(8):7834-45. PubMed ID: 25077939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallinity of purple membranes comprising the chloride-pumping bacteriorhodopsin variant D85T and its modulation by pH and salinity.
    Rhinow D; Chizhik I; Baumann RP; Noll F; Hampp N
    J Phys Chem B; 2010 Nov; 114(46):15424-8. PubMed ID: 21033713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.