BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 22907268)

  • 1. A quantitative fitness analysis workflow.
    Banks AP; Lawless C; Lydall DA
    J Vis Exp; 2012 Aug; (66):. PubMed ID: 22907268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Quantitative Fitness Analysis (QFA) of Yeast Cultures.
    Holstein EM; Lawless C; Banks P; Lydall D
    Methods Mol Biol; 2018; 1672():575-597. PubMed ID: 29043649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colonyzer: automated quantification of micro-organism growth characteristics on solid agar.
    Lawless C; Wilkinson DJ; Young A; Addinall SG; Lydall DA
    BMC Bioinformatics; 2010 May; 11():287. PubMed ID: 20509870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative Fitness Analysis Identifies exo1∆ and Other Suppressors or Enhancers of Telomere Defects in Schizosaccharomyces pombe.
    Narayanan S; Dubarry M; Lawless C; Banks AP; Wilkinson DJ; Whitehall SK; Lydall D
    PLoS One; 2015; 10(7):e0132240. PubMed ID: 26168240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays.
    Shah NA; Laws RJ; Wardman B; Zhao LP; Hartman JL
    BMC Syst Biol; 2007 Jan; 1():3. PubMed ID: 17408510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. τ-SGA: synthetic genetic array analysis for systematically screening and quantifying trigenic interactions in yeast.
    Kuzmin E; Rahman M; VanderSluis B; Costanzo M; Myers CL; Andrews BJ; Boone C
    Nat Protoc; 2021 Feb; 16(2):1219-1250. PubMed ID: 33462440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian hierarchical modelling for inferring genetic interactions in yeast.
    Heydari J; Lawless C; Lydall DA; Wilkinson DJ
    J R Stat Soc Ser C Appl Stat; 2016 Apr; 65(3):367-393. PubMed ID: 27134314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balony: a software package for analysis of data generated by synthetic genetic array experiments.
    Young BP; Loewen CJ
    BMC Bioinformatics; 2013 Dec; 14():354. PubMed ID: 24305553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Baryshnikova A; Costanzo M; Dixon S; Vizeacoumar FJ; Myers CL; Andrews B; Boone C
    Methods Enzymol; 2010; 470():145-79. PubMed ID: 20946810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic genetic array analysis for global mapping of genetic networks in yeast.
    Kuzmin E; Sharifpoor S; Baryshnikova A; Costanzo M; Myers CL; Andrews BJ; Boone C
    Methods Mol Biol; 2014; 1205():143-68. PubMed ID: 25213244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHENOS: a high-throughput and flexible tool for microorganism growth phenotyping on solid media.
    Barton DBH; Georghiou D; Dave N; Alghamdi M; Walsh TA; Louis EJ; Foster SS
    BMC Microbiol; 2018 Jan; 18(1):9. PubMed ID: 29368646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids.
    Renner H; Grabos M; Becker KJ; Kagermeier TE; Wu J; Otto M; Peischard S; Zeuschner D; TsyTsyura Y; Disse P; Klingauf J; Leidel SA; Seebohm G; Schöler HR; Bruder JM
    Elife; 2020 Nov; 9():. PubMed ID: 33138918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automation of yeast spot assays using an affordable liquid handling robot.
    Taguchi S; Suda Y; Irie K; Ozaki H
    SLAS Technol; 2023 Apr; 28(2):55-62. PubMed ID: 36503082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multiplex culture system for the long-term growth of fission yeast cells.
    Callens C; Coelho NC; Miller AW; Sananes MRD; Dunham MJ; Denoual M; Coudreuse D
    Yeast; 2017 Aug; 34(8):343-355. PubMed ID: 28426144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocols and programs for high-throughput growth and aging phenotyping in yeast.
    Jung PP; Christian N; Kay DP; Skupin A; Linster CL
    PLoS One; 2015; 10(3):e0119807. PubMed ID: 25822370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Variation in Bacterial Reproductive Fitness: a High-Throughput Method.
    Frey PM; Baer J; Bergada-Pijuan J; Lawless C; Bühler PK; Kouyos RD; Lemon KP; Zinkernagel AS; Brugger SD
    mSystems; 2021 Feb; 6(1):. PubMed ID: 33531411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using colony size to measure fitness in Saccharomyces cerevisiae.
    Miller JH; Fasanello VJ; Liu P; Longan ER; Botero CA; Fay JC
    PLoS One; 2022; 17(10):e0271709. PubMed ID: 36227888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Innovative microscale workflow from fungi cultures to Cell Wall-Degrading Enzyme screening.
    Raulo R; Heuson E; Siah A; Phalip V; Froidevaux R
    Microb Biotechnol; 2019 Nov; 12(6):1286-1292. PubMed ID: 31006173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Greenblatt J; Emili A
    Methods Mol Biol; 2011; 765():125-53. PubMed ID: 21815091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemostat Culture for Yeast Physiology and Experimental Evolution.
    Dunham MJ; Kerr EO; Miller AW; Payen C
    Cold Spring Harb Protoc; 2017 Jul; 2017(7):pdb.top077610. PubMed ID: 28679718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.