These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 22907515)
21. Statistical optimization of a high maltose-forming, hyperthermostable and Ca2+-independent alpha-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. Uma Maheswar Rao JL; Satyanarayana T J Appl Microbiol; 2003; 95(4):712-8. PubMed ID: 12969284 [TBL] [Abstract][Full Text] [Related]
22. The optimized production, purification, characterization, and application in the bread making industry of three acid-stable alpha-amylases isoforms from a new isolated Bacillus subtilis strain US586. Trabelsi S; Ben Mabrouk S; Kriaa M; Ameri R; Sahnoun M; Mezghani M; Bejar S J Food Biochem; 2019 May; 43(5):e12826. PubMed ID: 31353531 [TBL] [Abstract][Full Text] [Related]
23. High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. Baños JG; Tomasini A; Szakács G; Barrios-González J J Biosci Bioeng; 2009 Aug; 108(2):105-10. PubMed ID: 19619855 [TBL] [Abstract][Full Text] [Related]
24. Production of thermo-alkali-stable xylanase by a novel polyextremophilic Bacillus halodurans TSEV1 in cane molasses medium and its applicability in making whole wheat bread. Kumar V; Satyanarayana T Bioprocess Biosyst Eng; 2014 Jun; 37(6):1043-53. PubMed ID: 24297158 [TBL] [Abstract][Full Text] [Related]
25. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. El-Shishtawy RM; Mohamed SA; Asiri AM; Gomaa AB; Ibrahim IH; Al-Talhi HA BMC Biotechnol; 2014 Apr; 14():29. PubMed ID: 24758479 [TBL] [Abstract][Full Text] [Related]
26. Production of extracellular alkaline alpha-amylase by solid state fermentation with a newly isolated Bacillus sp. Baysal Z; Uyar F; Doğru M; Alkan H Prep Biochem Biotechnol; 2008; 38(2):184-90. PubMed ID: 18320469 [TBL] [Abstract][Full Text] [Related]
27. Coconut oil cake--a potential raw material for the production of alpha-amylase. Ramachandran S; Patel AK; Nampoothiri KM; Francis F; Nagy V; Szakacs G; Pandey A Bioresour Technol; 2004 Jun; 93(2):169-74. PubMed ID: 15051078 [TBL] [Abstract][Full Text] [Related]
28. Amylase production by Saccharomycopsis fibuligera A11 in solid-state fermentation for hydrolysis of Cassava starch. Chen L; Chi ZM; Chi Z; Li M Appl Biochem Biotechnol; 2010 Sep; 162(1):252-63. PubMed ID: 19701612 [TBL] [Abstract][Full Text] [Related]
29. Improved thermostable α-amylase activity of Bacillus amyloliquefaciens by low-energy ion implantation. Li XY; Zhang JL; Zhu SW Genet Mol Res; 2011 Sep; 10(3):2181-9. PubMed ID: 21968725 [TBL] [Abstract][Full Text] [Related]
30. Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Yamakawa S; Yamada R; Tanaka T; Ogino C; Kondo A Appl Microbiol Biotechnol; 2010 Jun; 87(1):109-15. PubMed ID: 20180115 [TBL] [Abstract][Full Text] [Related]
31. Isolation and identification of alpha-amylase producing Bacillus sp. from dhal industry waste. Thippeswamy S; Girigowda K; Mulimani VH Indian J Biochem Biophys; 2006 Oct; 43(5):295-8. PubMed ID: 17133736 [TBL] [Abstract][Full Text] [Related]
32. Phytase production by Sporotrichum thermophile in a cost-effective cane molasses medium in submerged fermentation and its application in bread. Singh B; Satyanarayana T J Appl Microbiol; 2008 Dec; 105(6):1858-65. PubMed ID: 19120634 [TBL] [Abstract][Full Text] [Related]
33. Hydrolysis of soluble starch using Bacillus licheniformis alpha-amylase immobilized on superporous CELBEADS. Shewale SD; Pandit AB Carbohydr Res; 2007 Jun; 342(8):997-1008. PubMed ID: 17368436 [TBL] [Abstract][Full Text] [Related]
34. [Preparation of an active strain of Bacillus licheniformis--producer of thermostable alpha-amylase]. Tsurikova NV; Nefedova LI; Kostyleva EV; Zvenigorodskiĭ VI; Iasinovskiĭ VG; Voeĭkova TA; Sinitsyn AP Prikl Biokhim Mikrobiol; 2002; 38(5):502-8. PubMed ID: 12391749 [TBL] [Abstract][Full Text] [Related]
35. Thermostable alpha-amylase production by an extreme thermophile Bacillus thermooleovorans. Narang S; Satyanarayana T Lett Appl Microbiol; 2001 Jan; 32(1):31-5. PubMed ID: 11169038 [TBL] [Abstract][Full Text] [Related]
36. Enhanced production of alkaline thermostable keratinolytic protease from calcium alginate immobilized cells of thermoalkalophilic Bacillus halodurans JB 99 exhibiting dehairing activity. Shrinivas D; Kumar R; Naik GR J Ind Microbiol Biotechnol; 2012 Jan; 39(1):93-8. PubMed ID: 21691794 [TBL] [Abstract][Full Text] [Related]
37. Improvement in lactic acid production from starch using alpha-amylase-secreting Lactococcus lactis cells adapted to maltose or starch. Okano K; Kimura S; Narita J; Fukuda H; Kondo A Appl Microbiol Biotechnol; 2007 Jul; 75(5):1007-13. PubMed ID: 17384945 [TBL] [Abstract][Full Text] [Related]
38. Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Mikami B; Adachi M; Kage T; Sarikaya E; Nanmori T; Shinke R; Utsumi S Biochemistry; 1999 Jun; 38(22):7050-61. PubMed ID: 10353816 [TBL] [Abstract][Full Text] [Related]
39. Efficient Expression of Maltohexaose-Forming Li Z; Su L; Duan X; Wu D; Wu J Biomed Res Int; 2017; 2017():5479762. PubMed ID: 29250543 [TBL] [Abstract][Full Text] [Related]
40. Optimization of culture conditions for enhanced production of extracellular α-amylase using solid-state and submerged fermentation from Aspergillus tamarii MTCC5152. Premalatha A; Vijayalakshmi K; Shanmugavel M; Rajakumar GS Biotechnol Appl Biochem; 2023 Apr; 70(2):835-845. PubMed ID: 36070879 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]