BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 22907734)

  • 1. Novel agents in acute myeloid leukemia.
    Ungewickell A; Medeiros BC
    Int J Hematol; 2012 Aug; 96(2):178-85. PubMed ID: 22907734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose escalation of lenalidomide in relapsed or refractory acute leukemias.
    Blum W; Klisovic RB; Becker H; Yang X; Rozewski DM; Phelps MA; Garzon R; Walker A; Chandler JC; Whitman SP; Curfman J; Liu S; Schaaf L; Mickle J; Kefauver C; Devine SM; Grever MR; Marcucci G; Byrd JC
    J Clin Oncol; 2010 Nov; 28(33):4919-25. PubMed ID: 20956622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-agent lenalidomide induces complete remission of acute myeloid leukemia in patients with isolated trisomy 13.
    Fehniger TA; Byrd JC; Marcucci G; Abboud CN; Kefauver C; Payton JE; Vij R; Blum W
    Blood; 2009 Jan; 113(5):1002-5. PubMed ID: 18824593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective Inhibitors of Histone Deacetylases 1 and 2 Synergize with Azacitidine in Acute Myeloid Leukemia.
    Min C; Moore N; Shearstone JR; Quayle SN; Huang P; van Duzer JH; Jarpe MB; Jones SS; Yang M
    PLoS One; 2017; 12(1):e0169128. PubMed ID: 28060870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic therapies in acute myeloid leukemia: the role of hypomethylating agents, histone deacetylase inhibitors and the combination of hypomethylating agents with histone deacetylase inhibitors.
    Xu QY; Yu L
    Chin Med J (Engl); 2020 Mar; 133(6):699-715. PubMed ID: 32044818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly targeted therapy in acute myeloid leukemia.
    Gill H; Leung AY; Kwong YL
    Future Oncol; 2016 Mar; 12(6):827-38. PubMed ID: 26828965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lost in translation? Ten years of development of histone deacetylase inhibitors in acute myeloid leukemia and myelodysplastic syndromes.
    Stahl M; Gore SD; Vey N; Prebet T
    Expert Opin Investig Drugs; 2016; 25(3):307-17. PubMed ID: 26807602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of decitabine for the treatment of acute myeloid leukemia.
    Ganetsky A
    Ann Pharmacother; 2012 Nov; 46(11):1511-7. PubMed ID: 23115225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination therapy with DNA methyltransferase inhibitors in hematologic malignancies.
    Gore SD
    Nat Clin Pract Oncol; 2005 Dec; 2 Suppl 1():S30-5. PubMed ID: 16341238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigational BET bromodomain protein inhibitors in early stage clinical trials for acute myelogenous leukemia (AML).
    Braun T; Gardin C
    Expert Opin Investig Drugs; 2017 Jul; 26(7):803-811. PubMed ID: 28541716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair.
    Ye J; Zha J; Shi Y; Li Y; Yuan D; Chen Q; Lin F; Fang Z; Yu Y; Dai Y; Xu B
    Clin Epigenetics; 2019 Oct; 11(1):137. PubMed ID: 31590682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A phase 2 study of high-dose lenalidomide as initial therapy for older patients with acute myeloid leukemia.
    Fehniger TA; Uy GL; Trinkaus K; Nelson AD; Demland J; Abboud CN; Cashen AF; Stockerl-Goldstein KE; Westervelt P; DiPersio JF; Vij R
    Blood; 2011 Feb; 117(6):1828-33. PubMed ID: 21051557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New strategies for relapsed acute myeloid leukemia: fertile ground for translational research.
    Dinner SN; Giles FJ; Altman JK
    Curr Opin Hematol; 2014 Mar; 21(2):79-86. PubMed ID: 24419335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic therapies in acute myeloid leukemia: where to from here?
    Fennell KA; Bell CC; Dawson MA
    Blood; 2019 Nov; 134(22):1891-1901. PubMed ID: 31697822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat shock protein 90 inhibition is cytotoxic to primary AML cells expressing mutant FLT3 and results in altered downstream signalling.
    Al Shaer L; Walsby E; Gilkes A; Tonks A; Walsh V; Mills K; Burnett A; Rowntree C
    Br J Haematol; 2008 May; 141(4):483-93. PubMed ID: 18373709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. P-glycoprotein and breast cancer resistance protein in acute myeloid leukaemia cells treated with the aurora-B kinase inhibitor barasertib-hQPA.
    Grundy M; Seedhouse C; Russell NH; Pallis M
    BMC Cancer; 2011 Jun; 11():254. PubMed ID: 21679421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA methyltransferase inhibitors in acute myeloid leukemia: discovery, design and first therapeutic experiences.
    Thomas X
    Expert Opin Drug Discov; 2012 Nov; 7(11):1039-51. PubMed ID: 22950862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock protein 90 - a potential target in the treatment of human acute myelogenous leukemia.
    Reikvam H; Ersvaer E; Bruserud O
    Curr Cancer Drug Targets; 2009 Sep; 9(6):761-76. PubMed ID: 19754360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeting of polo-like kinases and their cross talk with Aurora kinases--possible therapeutic strategies in human acute myeloid leukemia?
    Tsykunova G; Reikvam H; Ahmed AB; Nepstad I; Gjertsen BT; Bruserud Ø
    Expert Opin Investig Drugs; 2012 May; 21(5):587-603. PubMed ID: 22424119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The combination of FLT3 and DNA methyltransferase inhibition is synergistically cytotoxic to FLT3/ITD acute myeloid leukemia cells.
    Chang E; Ganguly S; Rajkhowa T; Gocke CD; Levis M; Konig H
    Leukemia; 2016 May; 30(5):1025-32. PubMed ID: 26686245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.