These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 22907798)

  • 1. A semipinacol rearrangement directed by an enzymatic system featuring dual-function FAD-dependent monooxygenase.
    Katsuyama Y; Harmrolfs K; Pistorius D; Li Y; Müller R
    Angew Chem Int Ed Engl; 2012 Sep; 51(37):9437-40. PubMed ID: 22907798
    [No Abstract]   [Full Text] [Related]  

  • 2. Completing the puzzle of aurachin biosynthesis in Stigmatella aurantiaca Sg a15.
    Pistorius D; Li Y; Sandmann A; Müller R
    Mol Biosyst; 2011 Dec; 7(12):3308-15. PubMed ID: 21979787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically unprecedented biocatalytic (AuaG) retro-[2,3]-Wittig rearrangement: a new insight into aurachin B biosynthesis.
    Katsuyama Y; Li XW; Müller R; Nay B
    Chembiochem; 2014 Nov; 15(16):2349-52. PubMed ID: 25209961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereoselective construction of quaternary carbon stereocenters via a semipinacol rearrangement strategy.
    Wang B; Tu YQ
    Acc Chem Res; 2011 Nov; 44(11):1207-22. PubMed ID: 21728380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Type II polyketide synthase from the gram-negative Bacterium Stigmatella aurantiaca is involved in Aurachin alkaloid biosynthesis.
    Sandmann A; Dickschat J; Jenke-Kodama H; Kunze B; Dittmann E; Müller R
    Angew Chem Int Ed Engl; 2007; 46(15):2712-6. PubMed ID: 17335090
    [No Abstract]   [Full Text] [Related]  

  • 6. Highly diastereo- and enantio-selective epoxidation of secondary allylic alcohols catalyzed by styrene monooxygenase.
    Lin H; Liu Y; Wu ZL
    Chem Commun (Camb); 2011 Mar; 47(9):2610-2. PubMed ID: 21234475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of aurachins A-L in Stigmatella aurantiaca: a feeding study.
    Höfle G; Kunze B
    J Nat Prod; 2008 Nov; 71(11):1843-9. PubMed ID: 18989924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unprecedented anthranilate priming involving two enzymes of the acyl adenylating superfamily in aurachin biosynthesis.
    Pistorius D; Li Y; Mann S; Müller R
    J Am Chem Soc; 2011 Aug; 133(32):12362-5. PubMed ID: 21770425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of the stereoselective formation of the spirooxindole ring in the biosynthesis of citrinadins.
    Liu Z; Zhao F; Zhao B; Yang J; Ferrara J; Sankaran B; Venkataram Prasad BV; Kundu BB; Phillips GN; Gao Y; Hu L; Zhu T; Gao X
    Nat Commun; 2021 Jul; 12(1):4158. PubMed ID: 34230497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AuaA, a membrane-bound farnesyltransferase from Stigmatella aurantiaca, catalyzes the prenylation of 2-methyl-4-hydroxyquinoline in the biosynthesis of aurachins.
    Stec E; Pistorius D; Müller R; Li SM
    Chembiochem; 2011 Jul; 12(11):1724-30. PubMed ID: 21671333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed epoxidation of cyclohexa-1,4-dienes-stereoselective formation of up to six contiguous stereogenic centres.
    Butters M; Beetstra DJ; Elliott MC; Hill-Cousins J; Kariuki BM
    Org Biomol Chem; 2008 Dec; 6(23):4426-34. PubMed ID: 19005603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthetic Plasticity Enables Production of Fluorinated Aurachins.
    Sester A; Stüer-Patowsky K; Hiller W; Kloss F; Lütz S; Nett M
    Chembiochem; 2020 Aug; 21(16):2268-2273. PubMed ID: 32216075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development.
    Stamm I; Lottspeich F; Plaga W
    Mol Microbiol; 2005 Jun; 56(5):1386-95. PubMed ID: 15882428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic intermolecular carbon electrophile induced semipinacol rearrangement.
    Zhang QW; Zhang XB; Li BS; Xiang K; Zhang FM; Wang SH; Tu YQ
    Chem Commun (Camb); 2013 Feb; 49(16):1648-50. PubMed ID: 23328915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formal synthesis of (-)-cephalotaxine based on a tandem hydroamination/semipinacol rearrangement reaction.
    Zhang QW; Xiang K; Tu YQ; Zhang SY; Zhang XM; Zhao YM; Zhang TC
    Chem Asian J; 2012 May; 7(5):894-8. PubMed ID: 22383373
    [No Abstract]   [Full Text] [Related]  

  • 16. Semipinacol rearrangement in natural product synthesis.
    Song ZL; Fan CA; Tu YQ
    Chem Rev; 2011 Nov; 111(11):7523-56. PubMed ID: 21851053
    [No Abstract]   [Full Text] [Related]  

  • 17. Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis.
    Hollmann F; Lin PC; Witholt B; Schmid A
    J Am Chem Soc; 2003 Jul; 125(27):8209-17. PubMed ID: 12837091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations at the putative active cavity of styrene monooxygenase: enhanced activity and reversed enantioselectivity.
    Lin H; Tang DF; Ahmed AA; Liu Y; Wu ZL
    J Biotechnol; 2012 Oct; 161(3):235-41. PubMed ID: 22796094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tin(II) chloride assisted synthesis of N-protected γ-amino β-keto esters through semipinacol rearrangement.
    Bandyopadhyay A; Agrawal N; Mali SM; Jadhav SV; Gopi HN
    Org Biomol Chem; 2010 Nov; 8(21):4855-60. PubMed ID: 20734011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organocatalytic asymmetric fluorination/semipinacol rearrangement: an efficient approach to chiral β-fluoroketones.
    Chen ZM; Yang BM; Chen ZH; Zhang QW; Wang M; Tu YQ
    Chemistry; 2012 Oct; 18(41):12950-4. PubMed ID: 22936470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.